University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2020 Assignment 2

Due 12:30pm Monday, April 13, 2020
Please refer to the first homework for submission format and procedures (and replace hw01 by hw02 in the relevant places, of course).

1. Brain-warmer: oscillator algebra. Convince yourself that an operator \mathcal{O} made of creation and annihilation operators \mathbf{a}_{k} and \mathbf{a}_{k}^{\dagger} for various k commutes with the number operator $\sum_{k} \mathbf{N}_{k}$ if and only if it has the same number of as as $\mathbf{a}^{\dagger} \mathrm{s}$.
2. Brain-warmer: time evolution. Recall the expression for \mathbf{q}_{n} in terms of creation and annihilation operators given in the lecture notes. Check that the expression for \mathbf{p}_{n} in terms of creation and annihilation operators is consistent with the Heisenberg equations of motion

$$
\mathbf{p}_{n}=m \dot{\mathbf{q}}_{n}=\frac{\mathbf{i} m}{\hbar}\left[\mathbf{H}, \mathbf{q}_{n}\right] .
$$

(That is, evaluate the right hand side of this expression using the algebra of \mathbf{a}_{k} and \mathbf{a}_{k}^{\dagger}.
3. Entropy and thermodynamics. Consider a quantum system with hamiltonian \mathbf{H} and Hilbert space \mathcal{H} Its behavior in thermal equilibrium at temperature T can be described using the thermal density matrix

$$
\boldsymbol{\rho}_{\beta} \equiv \frac{1}{Z} e^{-\beta \mathbf{H}}
$$

where $\frac{\beta \equiv 1}{T}$ specifies the temperature and Z is a normalization factor. (We can think about this as the density matrix resulting from coupling the system to a heat bath and tracing out the Hilbert space of the heat bath.)
(a) Find a formal expression for Z by demanding that $\boldsymbol{\rho}_{\beta}$ is normalized appropriately. This is called the partition function.
(b) Recall that the von Neumann entropy of a density matrix is defined as

$$
S[\rho]=-\operatorname{tr} \rho \log \rho .
$$

Show that the von Neumann entropy of $\boldsymbol{\rho}_{\beta}$ can be written as

$$
S_{\beta}=E / T+\log Z
$$

where $E \equiv\langle\mathbf{H}\rangle$ is the expectation value for the energy. Convince yourself that this is same as the thermal entropy.
(c) Evaluate Z and E and the heat capacity $C=\partial_{T} E$ for the case where the system is a simple harmonic oscillator

$$
\mathcal{H}=\operatorname{span}\{|n\rangle, n=0,1,2 \ldots\}, \quad \mathbf{H}=\hbar \omega\left(\mathbf{n}+\frac{1}{2}\right)
$$

with $\mathbf{n}|n\rangle=n|n\rangle$.
(d) Now evaluate the low-temperature equilibrium heat capacity for a harmonic mattress (the d-dimensional version of the harmonic chain). That is, find the heat capacity for a collection of harmonic oscillators labelled by wavenumber \vec{k} in d dimensions,

$$
\mathbf{H}=\sum_{k} \hbar \omega\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right)
$$

with dispersion relation $\omega_{k}=v_{s}|k|$.
4. Momentum. In this problem we consider a scalar field theory in d spatial dimensions. Consider the operator

$$
\overrightarrow{\mathbf{P}} \equiv \int \mathrm{d}^{d} k \hbar \vec{k} a_{k}^{\dagger} a_{k}
$$

where $\int \mathrm{d}^{d} k \ldots \equiv \int \frac{d^{d} k}{(2 \pi)^{d}} \cdots$
(a) Find $\left[\overrightarrow{\mathbf{P}}, a_{k}^{\dagger}\right]$, and $\left[\overrightarrow{\mathbf{P}}, a_{k}\right]$.
(b) Show using 4a and the mode expansion of a scalar field that

$$
[\overrightarrow{\mathbf{P}}, \phi(x)]=\mathbf{i} \hbar \vec{\nabla} \phi(x) .
$$

(c) Conclude (using Taylor's theorem) that

$$
e^{-\mathbf{i} \cdot \vec{a} \cdot \overrightarrow{\mathbf{P}} / \hbar} \phi(x) e^{\mathbf{i} \vec{a} \cdot \overrightarrow{\mathbf{P}} / \hbar}=\phi(x+a)
$$

and that therefore $\overrightarrow{\mathbf{P}}$ generates translations. Therefore $\overrightarrow{\mathbf{P}}$ is the operator representing the momentum carried by the field (like the Poynting vector for the electromagnetic field).
(d) Find $\overrightarrow{\mathbf{P}}\left|\vec{k}_{1}, \vec{k}_{2} \ldots \vec{k}_{n}\right\rangle$, the action of this operator on a state of n phonons. Conclude that $\hbar \vec{k}$ is the momentum of the phonon labelled by wavenumber \vec{k}.
5. Gaussian identity. Show that for a gaussian quantum system

$$
\left\langle e^{\mathbf{i} K \mathbf{q}}\right\rangle=e^{-A(K)\left\langle\mathbf{q}^{2}\right\rangle}
$$

and determine $A(K)$. Here $\langle\ldots\rangle \equiv\langle 0| \ldots|0\rangle$. Here by 'gaussian' I mean that \mathbf{H} contains only quadratic and linear terms in both \mathbf{q} and its conjugate variable \mathbf{p} (but for the formula to be exactly correct as stated you must assume \mathbf{H} contains only terms quadratic in \mathbf{q} and \mathbf{p}; for further entertainment fix the formula for the case with linear terms in \mathbf{H}).

I recommend using the path integral representation (with hints from the previous problem). Alternatively, you can use the harmonic oscillator operator algebra. Or, better, do it both ways.

