
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 3

Due 12:30pm Monday, April 20, 2020

Please refer to the first homework for submission format and procedures (and re-

place hw01 by hw03 in the relevant places, of course).

1. Brain-warmer: fluctuations of the EM field. Let us focus on a single mode,

and a single polarization, of the EM field, at a point in space:

E(t) ≡ E(~r = 0, t) = i

√
~ω

2ε0V

(
ae−iωt − a†eiωt

)
where V is the volume of the cavity in which this mode lives. Define the variance

of an operator in a state ψ as

∆ψE ≡
√
〈ψ|E2(t)|ψ〉 − (〈ψ|E(t)|ψ〉)2.

(a) Find the variance of E in the vacuum, ∆0E.

(b) Find the variance of E in the state of exactly n photons (all in this mode).

(c) A more realistic state, for both a single-mode laser, and for a classical source

of light, is a coherent state. (In a classical source of light, different modes

have random phases relative to each other.) In this state, what is the ex-

pected number of photons? What is its variance?

Find the variance of E in a coherent state |z〉, where a |z〉 = z |z〉.

2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation

operators

[aks, a
†
k′s] = δkk′δss′ . (1)

implies (using the mode expansion for A) that

[Ai(~r),Ej(~r
′)] = −i~

∫
d̄3k ei

~k·(~r−~r′)
(
δij − k̂ik̂j

)
/ε0

(and also [Ai(~r),Aj(~r
′)] = 0 and [Ei(~r),Ej(~r

′)] = 0).

Conclude that it’s not possible to simultaneously measure Ex(~r) and By(~r).
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(b) Using the result of the previous part, check that the wave equation for Ai(x)

follows from the Heisenberg equations of motion

−∂t~E =
i

~
[H, ~E].

3. A charged particle, classically. This problem is an exercise in calculus of

variations, as well as an important ingredient in our discussion of particles in

electromagnetic fields.

Consider the following action functional for a particle in three dimensions:

S[x] =

∫
dt
(m

2
~̇x2 − eΦ(~x) +

e

c
~̇x · ~A(x)

)
.

(a) Show that the extremization of this functional gives the equation of motion:

δS[x]

δxi(t)
= −mẍi(t)− e∂xiΦ(x(t)) +

e

c
ẋjFij(x(t))

where Fij ≡ ∂xiAj−∂xjAi. Show that this is the same as the usual Coulomb-

Lorentz force law

~F = e

(
~E +

~v

c
× ~B

)
with Bi ≡ 1

2
εijkFjk.

(b) Show that the canonical momenta are

Πi ≡
∂L

∂ẋi
= mẋi +

e

c
Ai(x).

Here S =
∫
dtL. (I call them Π rather than p to emphasize the difference

from the ‘mechanical momentum’ mẋ.) Show that the resulting Hamiltonian

is

H ≡
∑
i

ẋiΠi − L =
1

2m

(
Πi −

e

c
Ai(x(t))

)2
+ eΦ.

4. Phonons in salt. Consider a model of a more complex solid, where there are

two kinds of atoms, of masses m and M , connected by springs of strength κ1 and

κ2, as in the figure. (This is a cartoon of an ionic solid, like NaCl.)

The unit cell, i.e. the pattern that is repeated, contains two atoms. Let qn be

the deviation from equilibrium position of the nth light atom and Qn be the
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deviation from equilibrium position of the nth heavy atom. Assume periodic

boundary conditions. You may wish to rescale the variables q,Q to simplify

the dependence on the parameters. (If you prefer, study the special case where

m = M , but κ1 6= κ2.)

By making the Fourier ansatz(
qn
Qn

)
=

1√
N

∑
k

eikna
(
qk
Qk

)
find the spectrum of normal modes. Introduce creation and annihilation operators

and reduce the problem to a collection of decoupled oscillators.

In addition to the acoustic phonons, which have dispersion ωk ∼ vs|k| near k = 0,

and represent the quantum avatar of the sound mode, you should find a branch of

optical phonons which have ωk
k→0→ a finite number. Interpret the optical phonon

mode in terms of the motion of the atoms.

5. How big is the Hilbert space? [Bonus problem] Show that the Hilbert space

of N bosons in D orbitals (i.e. D possible single-particle states) has dimension

DB(N,D) =
(N +D − 1)!

N !(D − 1)!
.

One way to think about this is to compute the canonical partition function at

infinite temperature DB(N,D) = tre−βH |β=0.

6. Casimir force is regulator-independent. [Bonus problem] Suppose we use a

different regulator for the sum in the vacuum energy
∑

j ~ωj. Instead we replace

f(d) 
1

2

∞∑
j=1

ωjK(ωj)

where the function K is

K(ω) =
∑
α

cα
Λα

ω + Λα

.

We impose two conditions on the parameters cα,Λα:

• We want the low-frequency answer to but unmodified:

K(ω)
ω→0→ 1

– this requires
∑

α cα = 1.
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• We want the sum over j to converge; this requires that K(ω) falls off faster

than ω−2. Taylor expanding in the limit ω � Λα, we have

K(ω)
ω→∞→ 1

ω

∑
α

cαΛα −
1

ω2

∑
α

cαΛ2
α + · · · .

So we also require
∑

α cαΛα = 0 and
∑

α cαΛ2
α = 0.

First, verify the previous claims about K(ω).

Then compute f(d) and show that with these assumptions, the Casimir force is

independent of the parameters cα,Λα.

[A hint for doing the sum: use the identity

1

X
=

∫ ∞
0

dse−sX

inside the sum to make it a geometric series. To do the remaining integral over

s, Taylor expand the integrand in the regime of interest.]
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