University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2020 Assignment 3

Due 12:30pm Monday, April 20, 2020
Please refer to the first homework for submission format and procedures (and replace hw01 by hw03 in the relevant places, of course).

1. Brain-warmer: fluctuations of the EM field. Let us focus on a single mode, and a single polarization, of the EM field, at a point in space:

$$
\mathbf{E}(t) \equiv \mathbf{E}(\vec{r}=0, t)=\mathbf{i} \sqrt{\frac{\hbar \omega}{2 \varepsilon_{0} V}}\left(\mathbf{a} e^{-\mathbf{i} \omega t}-\mathbf{a}^{\dagger} e^{\mathbf{i} \omega t}\right)
$$

where V is the volume of the cavity in which this mode lives. Define the variance of an operator in a state ψ as

$$
\Delta_{\psi} E \equiv \sqrt{\langle\psi| \mathbf{E}^{2}(t)|\psi\rangle-(\langle\psi| \mathbf{E}(t)|\psi\rangle)^{2}}
$$

(a) Find the variance of \mathbf{E} in the vacuum, $\Delta_{0} E$.
(b) Find the variance of \mathbf{E} in the state of exactly n photons (all in this mode).
(c) A more realistic state, for both a single-mode laser, and for a classical source of light, is a coherent state. (In a classical source of light, different modes have random phases relative to each other.) In this state, what is the expected number of photons? What is its variance?
Find the variance of \mathbf{E} in a coherent state $|z\rangle$, where $\mathbf{a}|z\rangle=z|z\rangle$.

2. Maxwell's equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation operators

$$
\begin{equation*}
\left[\mathbf{a}_{k s}, \mathbf{a}_{k^{\prime} s}^{\dagger}\right]=\delta_{k k^{\prime}} \delta_{s s^{\prime}} . \tag{1}
\end{equation*}
$$

implies (using the mode expansion for \mathbf{A}) that

$$
\left[\mathbf{A}_{i}(\vec{r}), \mathbf{E}_{j}\left(\vec{r}^{\prime}\right)\right]=-\mathbf{i} \hbar \int \mathrm{d}^{3} k e^{\mathrm{i} \vec{k} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}\left(\delta_{i j}-\hat{k}_{i} \hat{k}_{j}\right) / \varepsilon_{0}
$$

(and also $\left[\mathbf{A}_{i}(\vec{r}), \mathbf{A}_{j}\left(\vec{r}^{\prime}\right)\right]=0$ and $\left.\left[\mathbf{E}_{i}(\vec{r}), \mathbf{E}_{j}\left(\vec{r}^{\prime}\right)\right]=0\right)$.
Conclude that it's not possible to simultaneously measure $E_{x}(\vec{r})$ and $B_{y}(\vec{r})$.
(b) Using the result of the previous part, check that the wave equation for $\mathbf{A}_{i}(x)$ follows from the Heisenberg equations of motion

$$
-\partial_{t} \overrightarrow{\mathbf{E}}=\frac{\mathbf{i}}{\hbar}[\mathbf{H}, \overrightarrow{\mathbf{E}}] .
$$

3. A charged particle, classically. This problem is an exercise in calculus of variations, as well as an important ingredient in our discussion of particles in electromagnetic fields.

Consider the following action functional for a particle in three dimensions:

$$
S[x]=\int d t\left(\frac{m}{2} \dot{\vec{x}}^{2}-e \Phi(\vec{x})+\frac{e}{c} \dot{\vec{x}} \cdot \vec{A}(x)\right)
$$

(a) Show that the extremization of this functional gives the equation of motion:

$$
\frac{\delta S[x]}{\delta x^{i}(t)}=-m \ddot{x}^{i}(t)-e \partial_{x^{i}} \Phi(x(t))+\frac{e}{c} \dot{x}^{j} F_{i j}(x(t))
$$

where $F_{i j} \equiv \partial_{x^{i}} A_{j}-\partial_{x^{j}} A_{i}$. Show that this is the same as the usual CoulombLorentz force law

$$
\vec{F}=e\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)
$$

with $B_{i} \equiv \frac{1}{2} \epsilon_{i j k} F_{j k}$.
(b) Show that the canonical momenta are

$$
\Pi_{i} \equiv \frac{\partial L}{\partial \dot{x}^{i}}=m \dot{x}^{i}+\frac{e}{c} A_{i}(x) .
$$

Here $S=\int d t L$. (I call them Π rather than p to emphasize the difference from the 'mechanical momentum' $m \dot{x}$.) Show that the resulting Hamiltonian is

$$
H \equiv \sum_{i} \dot{x}^{i} \Pi^{i}-L=\frac{1}{2 m}\left(\Pi_{i}-\frac{e}{c} A_{i}(x(t))\right)^{2}+e \Phi
$$

4. Phonons in salt. Consider a model of a more complex solid, where there are two kinds of atoms, of masses m and M, connected by springs of strength κ_{1} and κ_{2}, as in the figure. (This is a cartoon of an ionic solid, like NaCl .)

The unit cell, i.e. the pattern that is repeated, contains two atoms. Let q_{n} be the deviation from equilibrium position of the nth light atom and Q_{n} be the
deviation from equilibrium position of the nth heavy atom. Assume periodic boundary conditions. You may wish to rescale the variables q, Q to simplify the dependence on the parameters. (If you prefer, study the special case where $m=M$, but $\kappa_{1} \neq \kappa_{2}$.)

By making the Fourier ansatz

$$
\binom{q_{n}}{Q_{n}}=\frac{1}{\sqrt{N}} \sum_{k} e^{\mathrm{i} k n a}\binom{q_{k}}{Q_{k}}
$$

find the spectrum of normal modes. Introduce creation and annihilation operators and reduce the problem to a collection of decoupled oscillators.

In addition to the acoustic phonons, which have dispersion $\omega_{k} \sim v_{s}|k|$ near $k=0$, and represent the quantum avatar of the sound mode, you should find a branch of optical phonons which have $\omega_{k} \xrightarrow{k \rightarrow 0}$ a finite number. Interpret the optical phonon mode in terms of the motion of the atoms.
5. How big is the Hilbert space? [Bonus problem] Show that the Hilbert space of N bosons in D orbitals (i.e. D possible single-particle states) has dimension

$$
\mathcal{D}_{B}(N, D)=\frac{(N+D-1)!}{N!(D-1)!}
$$

One way to think about this is to compute the canonical partition function at infinite temperature $\mathcal{D}_{B}(N, D)=\left.\operatorname{tr} e^{-\beta H}\right|_{\beta=0}$.
6. Casimir force is regulator-independent. [Bonus problem] Suppose we use a different regulator for the sum in the vacuum energy $\sum_{j} \hbar \omega_{j}$. Instead we replace

$$
f(d) \rightsquigarrow \frac{1}{2} \sum_{j=1}^{\infty} \omega_{j} K\left(\omega_{j}\right)
$$

where the function K is

$$
K(\omega)=\sum_{\alpha} c_{\alpha} \frac{\Lambda_{\alpha}}{\omega+\Lambda_{\alpha}}
$$

We impose two conditions on the parameters $c_{\alpha}, \Lambda_{\alpha}$:

- We want the low-frequency answer to but unmodified:

$$
K(\omega) \xrightarrow{\omega \rightarrow 0} 1
$$

- this requires $\sum_{\alpha} c_{\alpha}=1$.
- We want the sum over j to converge; this requires that $K(\omega)$ falls off faster than ω^{-2}. Taylor expanding in the limit $\omega \gg \Lambda_{\alpha}$, we have

$$
K(\omega) \xrightarrow{\omega \rightarrow \infty} \frac{1}{\omega} \sum_{\alpha} c_{\alpha} \Lambda_{\alpha}-\frac{1}{\omega^{2}} \sum_{\alpha} c_{\alpha} \Lambda_{\alpha}^{2}+\cdots
$$

So we also require $\sum_{\alpha} c_{\alpha} \Lambda_{\alpha}=0$ and $\sum_{\alpha} c_{\alpha} \Lambda_{\alpha}^{2}=0$.
First, verify the previous claims about $K(\omega)$.
Then compute $f(d)$ and show that with these assumptions, the Casimir force is independent of the parameters $c_{\alpha}, \Lambda_{\alpha}$.
[A hint for doing the sum: use the identity

$$
\frac{1}{X}=\int_{0}^{\infty} d s e^{-s X}
$$

inside the sum to make it a geometric series. To do the remaining integral over s, Taylor expand the integrand in the regime of interest.]

