
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 6

Due 12:30pm Monday, May 11, 2020

Please refer to the first homework for submission format and procedures (and re-

place hw01 by hw06 in the relevant places, of course).

1. Interacting particles on a very small lattice.

Consider the Hamiltonian

H = −t
N∑
i=1

(
a†iai+1 + a†i+1ai

)
+ V

∑
i

nini+1

describing particles on a circular chain (ai+N = ai). Here ni ≡ a†iai. Assume

t, V > 0.

(a) Suppose that the operators a are fermionic ({ai, aj} = δij). Suppose there

are only three (N=3) sites. Write the matrix form of the Hamiltonian acting

on the sector with exactly two fermions. Beware of signs. Find its eigenval-

ues and eigenvectors. Feel free to use some software (e.g. Mathematica or

Sympy). Compare to the case with exactly one fermion.

(b) Consider general N sites and exactly N −1 particles. Again compare to the

case of a single particle.

(c) Consider again N = 3 and exactly two particles, but now suppose that the

particles are bosons. Write down the matrix representation of the Hamilto-

nian in this case. Plot the spectrum as a function of V/t.

2. Brain-warmer: Spin rotations. The goal of this problem is to check that we

get the same result for mean field theory of the Transverse Field Ising Model as

we did from the variational perspective.

(a) Show that

H(θ) ≡ −K
∑
i

(sin θXi + cos θZi) = −KU
∑
i

ZiU
†

where

U = e−iθ
∑

i Yi .

This is a global rotation about the y-axis.
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(b) Conclude that the groundstate of H(θ) is

|θ〉 ≡ U⊗i |↑〉i .

(c) Compute m = 〈θ|Zi |θ〉.
(d) Impose the self-consistency condition that m is the expectation value used

to determine the mean field in

HTFIM ' HMFT = −J
∑
i

gXi−
∑
i

Zi

(
1

2

∑
neighbors j of i

〈Zj〉

)
= −J

∑
i

(
gXi −

1

2
zmZi

)
.

3. Two coupled spins.

This is a very useful warmup for the next problem. Consider a four-state system

consisting of two qbits,

H = span{|ε1〉 ⊗ |ε2〉 ≡ |ε1ε2〉 , ε =↑z, ↓z}.

(a) For each qbit, define σ± ≡ 1
2

(σx ± iσy). (These are raising and lowering

operators for σz: [σz,σ±] = ±2σ±. Check this.)

Show that

~σ1 · ~σ2 = 2
(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
+ σz

1σ
z
2 .

Here, by for example σx
1 I mean the operator σx ⊗ 1 which acts as

σx ⊗ 1 |↑ ε2〉 = |↓ ε2〉 , σx ⊗ 1 |↓ ε2〉 = |↑ ε2〉 .

(b) Determine the action of the operator ~σ1 · ~σ2 on the basis states

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 .

(c) Show that the four vectors

|0, 0〉 =
1√
2

(|↑↓〉 − |↓↑〉) , |1, 1〉 ≡ |↑↑〉 , |1, 0〉 ≡ 1√
2

(|↑↓〉+ |↓↑〉) , |1,−1〉 ≡ |↓↓〉

are orthonormal and are eigenvectors of ~σ1 · ~σ2 with eigenvalues 1 or −3.

(d) Show that they are also eigenvectors of J2 ≡ (~σ1 + ~σ2)2 and Jz ≡ σz
1 + σz

2

and find their eigenvalues.

(e) Consider the operator

P1,2 ≡
1

2
(1 + ~σ1 · ~σ2)

acting on the two spins. Show that P1,2 acts by exchanging the states of the

two spins:

P1,2 |ε1ε2〉 = |ε2ε1〉 .
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(f) Show that the operator

Q1,2 ≡
1

4
(1−~σ1 · ~σ2)

acts as a projector onto the (singlet) state |0, 0〉.

4. Spin chains and spin waves.

A one-dimensional (SU(2)-symmetric) ferromagnet can be represented as a chain

of N qbits (spin-1/2 particles) numbered n = 0, ...N − 1, N � 1, fixed along

a line with a spacing ` between each successive pair. It is convenient to use

periodic boundary conditions, where the Nth spin is identified with the 0th spin:

n+N ≡ n. Suppose that each spin interacts only with its two nearest neighbors,

so the Hamiltonian can be written as

H =
1

2
NJ1 − 1

2
J
N−1∑
n=0

~σn · ~σn+1 .

where J is a coupling constant determining the strength of the interactions.

(a) Show that all eigenvalues E of H are non-negative, and that the minimum

energy E0 (the ground state) is obtained in the state where all the spins

point in the same direction. A possible choice for the ground state |Φ0〉 is

then

|Φ0〉 = |↑z〉n=0 ⊗ |↑z〉n=1 ⊗ ...⊗ |↑z〉N−1 ≡ |↑↑ ... ↑〉 .

(b) Show that any state obtained from |Φ0〉 by rotating each of the spins by the

same angle is also a possible ground state.

[Hint: the generator of spin rotations ~J ≡
∑

n ~σn commutes with the Hamil-

tonian.]

[Cultural remark: the phenomenon of a ground state which does not preserve

a symmetry of the Hamiltonian is called spontaneous symmetry breaking. ]

(c) Now we wish to find the low-energy excitations above the ground state |Φ0〉.
Show that H can be written

H = NJ1 − J
N−1∑
n=0

Pn,n+1 = J

N−1∑
n=0

(1 − Pn,n+1) .

where

Pn,n+1 ≡
1

2
(1 + ~σn · ~σn+1) .

Using the result of the problem 3, show that the eigenvectors of H are linear

combinations of vectors in which the number of up spins minus the number

of down spins is fixed. Let |Ψn〉 be the state in which the spin n is down

with all the other spins up. What is the action of H on |Ψn〉?

3



(d) We are going to construct eigenvectors |ks〉 of H out of linear combinations

of the |Ψn〉. Let

|ks〉 =
1√
N

N−1∑
n=0

eiksn` |Ψn〉

with

ks =
2πs

N`
, s = 0, 1, ...N − 1 .

Show that |ks〉 is an eigenvector of H and determine the energy eigenvalue

Ek. Show that the energy is proportional to k2
s as ks → 0. This state

describes an elementary excitation called a spin wave or magnon with wave-

vector ks.

5. Jordan-Wigner solution of the TFIM chain. [Bonus problem. If you want

to hand in your solution to this problem with HW07, that’s fine.]

Let’s look at the TFIM again:

HTFIM = −J
∑
j

(gXj + ZjZj+1)

has a phase transition between large-g and small-g phases.

(a) Verify the following statements.

(Disordered) large g: excitations are created by Zj – they are spin flips. The

groundstate is a condensate of domain walls: 〈τ z〉 6= 0. Here τ zj̄ ≡
∏

j>j̄ Xj

is the operator which creates a domain wall between sites j and j + 1.

(Ordered) small g: excitations are created by the ‘disorder’ operator τ zj̄ –

they are domain walls. The groundstate is a condensate of spins 〈Zj〉 6= 0,

i.e. a ferromagnet.

So we understand what are the ‘correct variables’ (in the sense that they

create the elementary excitations above the groundstate) at large and small

g. I claim that the Correct Variables everywhere in the phase diagram are

obtained by “attaching a spin to a domain wall”. These words mean the

following: let

χj ≡ Zjτ
z
j+ 1

2
= Zj

∏
j′>j

Xj′

χ̃j ≡ Yjτ
z
j+ 1

2
= −iZj

∏
j′≥j

Xj′ (1)

The first great virtue of this definition is that these operators agree with

the creators of the elementary excitations in both regimes we’ve studied:
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When g � 1, 〈Zj〉 ' 1 and more strongly, Zj = 〈Zj〉 + small, so χj '
〈Zj〉 τ zj+ 1

2

' τ z
j+ 1

2

, the domain wall creation operator. Similarly, when g � 1,

τ zj ' 1+ small, so χj ' Zj

〈
τ z
j+ 1

2

〉
' Zj, which is the spin flipper on the

paramagnetic vacuum.

(b) Now let us consider the algebra of these χs. Verify that

• They are real: χ†j = χj, χ̃
†
j = χ̃j.

and

• They are fermionic:

if i 6= j, χjχi + χiχj ≡ {χj,χi} = 0, {χ̃j, χ̃i} = 0, {χj, χ̃i} = 0. (2)

When they are at the same site:

χ2
j = 1 = χ̃2

j . In summary: {χi,χj} = 2δij, {χ̃i, χ̃j} = 2δij, .

Notice that (2) means that χi cares about χj even if |i− j| � 1. Fermions

are weird and non-local!

Recall from a previous homework that real fermion operators like this are called

Majorana fermion operators. We can make more familiar-looking objects by

making complex combinations:

cj ≡
1

2
(χj − iχ̃j) =⇒ c†j =

1

2
(χj + iχ̃j)

These satisfy the more familiar anticommutation relations:

{ci, c†j} = δij, {ci, cj} = 0, {c†i , c
†
j} = 0,

and in particular,
(
c†i

)2

= 0, like a good fermion creation operator should.

We can write HTFIM in terms of the fermion operators. We need to know how to

write Xj and ZjZj+1.

(c) Show that the operator which counts spin flips in the paramagnetic phase is

Xj = −iχ̃jχj = −2c†jcj + 1 = (−1)c
†
jcj .

(d) Show that the operator which counts domain walls is

ZjZj+1 = iχ̃j+1χj.
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(e) Conclude that

HTFIM = −J
∑
j

(iχ̃j+1χj + giχjχ̃j)

is quadratic in these variables, for any g! Free at last!

(f) The hamiltonian is quadratic in the cs, too, since they are linear in the χs.

In terms of complex fermions, show that

Xj = 1−2c†jcj, Zj = −
∏
i>j

(1−2c†ici)
(
cj + c†j

)
= −

∏
i>j

(−1)c
†
ici
(
cj + c†j

)
.

In terms of their Fourier modes ck ≡ 1√
N

∑
j cje

−ikxj , show that the TFIM

hamiltonian is

HTFIM = J
∑
k

(
2(g − cos ka)c†kck − i sin ka

(
c†−kc

†
k + c−kck

)
− g
)

(g) This Hamiltonian is quadratic in cks, but not quite diagonal. The solution

for the spectrum involves one more operation the fancy name for which is

‘Bogoliubov transformation’, which is the introduction of new (complex)

mode operators which mix particles and holes:

γk = ukck − ivkc
†
−k

Demanding that the new variables satisfy canonical commutators {γk,γ†k′} =

δk,k′ requires uk = cos (φk/2) , vk = sin (φk/2). We fix the angles φk by de-

manding that the hamiltonian in terms of γk be diagonal – no γkγ−k terms.

Show that the resulting condition is tanφk = ε2(k)
ε1(k)

with ε1(k) = 2J(g −

cos ka), ε2(k) = −J sin ka, and H =
∑

k εk

(
γ†kγk − 1

2

)
, with εk =

√
ε21 + ε22.

The end result is that the exact single-particle (single γ) dispersion is

εk = 2J
√

1 + g2 − 2g cos ka .

The argument of the sqrt is positive for g ≥ 0. This is minimized at k = 0,

which tells us the exact gap at all g:

εk ≥ ε0 = 2J |1− g| = ∆(g)

which, ridiculously, is just what we got from 1st order perturbation theory

on each side of the transition.
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