University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2020 Assignment 9

Due 12:30pm Wednesday, June 3, 2020

Please refer to the first homework for submission format and procedures (and replace hw01 by hw09 in the relevant places, of course).

1. Peierls' instability.

On a previous homework, we studied a Hamiltonian describing (spinless) fermions hopping on a chain:

$$H = -t \sum_{n} (1+u_n) c_n^{\dagger} c_{n+1} + h.c.$$

Consider an extension of the model to include also *phonon* modes, *i.e.* degrees of freedom encoding the positions of the ions in the solid. (Again we ignore the spins of the electrons for simplicity.)

$$H = -t \sum_{n} (1+u_n) c_n^{\dagger} c_{n+1} + h.c. + \sum_{n} K(u_n - u_{n+1})^2 \equiv H_F + H_E.$$

Here u_n is the deviation of the *n*th ion from its equilibrium position (in the +x direction), so the second term represents an elastic energy.

(a) Consider a configuration

$$u_n = \phi(-1)^n \tag{1}$$

where the ions move closer in pairs. Compute the single-particle electronic spectrum. (Hint: this enlarges the unit cell, making a fermionic analog of the problem of phonons in salt. Define $c_{2n} \equiv a_n, c_{2n+1} \equiv b_n$, and solve in Fourier space, $a_n \equiv \oint dk e^{2ikn} a_k \ etc.$) You should find that when $\phi \neq 0$ there is a gap in the electron spectrum (unlike $\phi = 0$).

(b) Compute the many-body groundstate energy of H_F in the configuration (1), at half-filling (*i.e.* the number of electrons is half the number of available states).

Compute H_E in this configuration, and minimize (graphically) the sum of the two as a function of ϕ .

(c) [Bonus problem: emergence of the Dirac equation] We can take a continuum limit of the above results. First, show that the low-energy excitations of \mathbf{H}_0 at a generic value of the filling are described the the massless Dirac lagrangian in 1+1 dimensions. Find an explicit choice of 1 + 1-d gamma matrices which matches the answer from the lattice model. Show that the right-movers are right-handed $\gamma^5 \equiv \gamma^0 \gamma^1 = 1$ and the left-movers are left-handed.

Next, include the coupling to phonons. Expand the spectrum near the minimum gap and include the effects of the field ϕ in the continuum theory.

- (d) [Bonus problem] You should find that the energy is independent of the *sign* of ϕ . This means that there are two groundstates. We can consider a domain wall between a region of + and a region of -. Show that this domain wall carries a fermion mode whose energy lies in the bandgap and has fermion number $\pm \frac{1}{2}$.
- (e) [Bonus problem] Diagonalize the relevant tight-binding matrix and find the mid-gap fermion mode.
- (f) Time-reversal played an important role here. If we allow complex hopping amplitudes, we can make a domain wall without midgap modes.
- 2. Particle conservation and the f-sum rule. Consider a collection of N particles (bosons or fermions) governed by a Hamiltonian of the form

$$\mathbf{H} = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j} V(r_{ij}).$$

Recall that the operator

$$\rho_q = \sum_i e^{-\mathbf{i}q \cdot \mathbf{r}_i}$$

is the Fourier transform of the particle density $\rho(r) = \sum_i \delta^d(r - \mathbf{r_i})$, where $\mathbf{r_i}$ is the position of the *i*th particle.

(a) Find

$$\partial_t \rho_q = -\mathbf{i}[\rho_q, \mathbf{H}]$$

and show that it can be written in the form

$$[\rho_q, \mathbf{H}] = \vec{q} \cdot \vec{\mathbf{J}}_q$$

where

$$\vec{\mathbf{J}}_{q} = \frac{1}{2} \sum_{i} \left(\frac{\vec{\mathbf{p}}_{i}}{m} e^{-\mathbf{i}q \cdot \mathbf{r}_{i}} + e^{-\mathbf{i}q \cdot \mathbf{r}_{i}} \frac{\vec{\mathbf{p}}_{i}}{m} \right).$$
(2)

Interpret this as a continuity equation.

- (b) For later use, compute $[\vec{\mathbf{J}}_q, \rho_q^{\dagger}]$.
- (c) Consider the object

$$\left\langle \Phi_{0} \right| \left[\left[
ho_{q}, \mathbf{H}
ight],
ho_{q}^{\dagger}
ight] \left| \Phi_{0}
ight
angle$$

where Φ_0 is the groundstate. Compute this by inserting a resolution of the identity $\mathbb{1} = \sum_n |\Phi_n\rangle\langle\Phi_n|$ in terms of energy eigenstates $\mathbf{H} |\Phi_n\rangle = (E_0 + \omega_n) |\Phi_n\rangle$ and show that it is equal to

$$\langle \Phi_0 | [[\rho_q, \mathbf{H}], \rho_q^{\dagger}] | \Phi_0 \rangle = 2 \int d\omega S(q, \omega)$$

where

$$S(q,\omega) = \sum_{n} \delta(\omega - \omega_{n}) |\langle \Phi_{n} | \rho_{q} | \Phi_{0} \rangle|^{2}$$
(3)

is the dynamical structure factor.

(d) Conclude (by combining the previous parts) that the f-sum rule

$$\int d\omega S(q,\omega) = \frac{N\hbar^2 q^2}{2m}.$$

is true.

3. The role of the Fermi surface in the Cooper problem. Redo the analysis of the Cooper problem, but without the Fermi surface. That is, set $k_F = 0$. Show that in this case the eigenvalue problem can be written as $-\frac{1}{v_0} = \Phi(E)$ with (in the thermodynamic limit, in d = 3 and at K = 0)

$$\Phi(E \equiv -2\Delta) = \frac{m}{\pi^2} \left(-k_a + 2\sqrt{m\Delta} \arctan \frac{k_a}{2\sqrt{m\Delta}} \right) \,.$$

(Here k_a is the maximum k which participates in the interaction.) Show that a minimum interaction strength $|v_0|$ is required for a boundstate to form (in contrast to the case with $k_F \neq 0$).