University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 10 (“Final Exam”)

Due 12:30pm Friday, June 12, 2020

Please refer to the first homework for submission format and procedures (and re-
place hw01 by hw10 in the relevant places, of course).

1. Brain-warmer: the size of a Cooper pair. In the Cooper problem, estimate
the mean square size of a Cooper pair in terms of the Fermi velocity vp =
|Vier||rp and the binding energy A.

Hints: (1) Don’t forget to normalize the wavefunction. (2) Show that [ d?rr?|¢(r)* =
[d’k|Ve (k)2 (3) Assume the Fermi surface is round, that vp and the density
of states vary slowly near the Fermi energy, and that ¢, > €p.

2. Non-BCS superconductivity. In this problem we describe a series of uncon-
trolled approximations which display d-wave superconductivity in a model with
repulsive interactions; it is something like a model of a cuprate superconductor.

Recall that starting from the Hubbard model on the square lattice at half-filling
with strong repulsive interactions U > ¢, we derived an effective antiferromag-
netic spin-spin interaction, by the superexchange mechanism. Now consider in-
troducing into this system a small finite density of holes. That is, we decrease
the filling fraction from half-filling. This will require some of the sites to be un-
occupied. It does not, however, require any of the sites to be doubly occupied.
An effective description incorporating this information is called the tJ-model:

HtJ =—1 Z (cjo'cja + C;‘o'cia'> + JZ ’5_’17' ’ S_”J
(i) (i4)

where S; = Lcf gc,, and J = 4t*/U. The first term describes the hopping of the

2 1o
holes, and the second term describes an interaction between the spins.

(a) Using the identity »_, 005055 = —2€a,€55+0apdys, show that the interaction
can be rewritten as

—

S1-S2=a <emciac;7> <€5§C15C26) + bciacmc;ﬁczﬁ. (1)

Find a,b.



The first term in (1) is written in a way that suggests a BCS factorization. The
second term we will simply ignore without justification'. So we will consider the
model

H,j_pcs = —tz (cwcﬂ, + c]ocw) + aJZ <6Mc1ac£7) <€55C16C25> .
(i)

(b) To develop a mean field theory for this model, we will study

- _tz < w jO’ + Cjcfcw> +CLJZ <A136045Czacjﬁ + Aljeaﬁczﬁcja |AZJ’ >

(ig)

where A;; = <ea5c . Convince yourself that the groundstate |MF)

iaCjp
of this hamiltonian provides a useful trial wavefunction for H;;_pcs.

(C) Check that Aij = A]z

(d) Assume a translation-invariant solution: A;; = A;_; = A;_;. This reduces
the number of parameters to two: A,, A, associated with z-links and y-links.
Write Hyp in terms of Fourier modes and Ay = A, cosk, + Ay cos k.

(e) Construct the groundstate |[MF) of Hyr by a Bogoliubov transformation.
(f) Compute (c_g c_py) = (MF| c_gjc_ir [MF).
(g) Show that the self-consistency condition

Ag = Z <C—k¢c—kT> COS ]C(; (2)

k

(6 = x,y) is the same as the condition obtained by minimizing the ground-
state energy with respect to A, .

(h) [Bonus problem] The self-consistency condition (2) involves some unfriendly
integrals. By doing these integrals numerically, find a solution with A, =
—A, at small hole-doping. This is a d-wave superconductor.

3. No anti-damping in equilibrium. Consider a system governed by a hamilto-
nian Hj in its groundstate. Poke the system by a small perturbation of definite
frequency and wavenumber via a (time-independent) operator Op,

H=Hy+V, V= [dnpe00n() = [ ¢t (0,0)08(0)

LA further warning which is irrelevant for actually doing this problem: if we actually project out

the doubly-occupied states, the cs are no longer canonical fermion operators. We will nevertheless
treat them as such below.



(a) Show that the rate of work done on the system is

aw d
— = Etrp(t)H = trp(t)0, V.

(b) Show that this is
aw

At

Using our result for linear response, relate this to the retarded Green’s

= [ d*0,0(x,t) (Op).

- R
function G50, -

(c) Now consider the time-averaged work done per unit volume

du _1aw
dt — V dt
where X = £ 027r/w dtX (t). Using the fact that G®(q,w)* = GB¥(—q, —w),
show that L
dw 2 R

(d) Using the relation to the spectrum of the theory, conclude that the average
work done on the system is positive.

4. One-dimensional atoms.

(a) Brain-warmer. Consider an electron in a one-dimensional ‘atom’ where
the Coulomb potential has been replaced by a delta function:

p2

Find the groundstate energy E, and verify the virial theorem:
1
SV Q

(b) Prove the virial theorem (3) for this example as follows: Argue that in any
energy eigenstate ([H, zp|]) = 0. Then evaluate [H, zp| in terms of 7" and V.

For the rest of the problem, we consider the analog of the helium atom, with

1 1
H= +§p%+§p§ - 25(1’1) — Z(S(.Tz) + (5(1’1 - l’g).

The idea is that the two terms proportional to Z are like the potential from the
nucleus, while the last term is the inter-electron interaction.



(c) First, ignore the last term and find the groundstate for spinful electrons.
Next, treat the last term as a perturbation and find the ground-state energy
to first order.

(d) Now use the variational method to improve the estimate of the previous
part. Use a trial wavefunction which allows for ‘screening,’ i.e. that the full
value of Z may not be seen by the electrons. Find the minimal value of (H).

(e) Here is the fun part of this problem. Consider the Hartree self-consistent
field ansatz

(21, 22) = (1) 0(72)

(times an appropriate spin wavefunction). Explain what is the spin wave-
function and why we do not need Hartree-Fock here. Show that

_%%¢—Z&@¢u%wﬁ=e¢ (4)

with (H) = 2e — (0(zq — x2)). Find the normalized analytic solution to (4)

and show that )
1 1
H —(z-2) —=.
< >Hartree < 4) 48

Compare to the results from the previous parts.

5. Self-consistent field for Helium. Implement the Hartree-Fock method for the
groundstate of Helium.

(a) Convince yourself that Hartree and Hartree-Fock are the same in this case.

Explain.
(b) Show that the Hartree equations can be written as
1=, Z
3P0+ (— 5+ UM) 6lr) = () 6)
" o)
U &P = 6
= [t (©

Note that the self-consistent potential (6) is automatically spherically sym-
metric, so the Central-Force Approximation is exact here.

(c¢) Show that the groundstate energy in this approximation can be written as
Bo=2e+47 | o)V (),
0

where U(r) is the self-consistent potential in (6), and € is the eigenvalue in

(5).



(d)

Find the form of U(r) in (6) for the variational ansatz using hydrogen or-
bitals. This is a good starting point for an iterative solution of these equa-
tions.

Hint: to do the integrals, use

BN i Py(cos ) (:—jg

r12| s —o

(where 6 is the angle between 7 and 75, and r~ = max(|r|, |r2|)) and the
orthonormality of the Legendre polynomials.

The fun part. [Bonus problem] Actually implement the solution of the
self-consistent equations (5), (6) numerically. The expected value of the
groundstate energy is Fy = —2.86168. What do you find?



