
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2020
Assignment 10 (“Final Exam”)

Due 12:30pm Friday, June 12, 2020

Please refer to the first homework for submission format and procedures (and re-

place hw01 by hw10 in the relevant places, of course).

1. Brain-warmer: the size of a Cooper pair. In the Cooper problem, estimate

the mean square size of a Cooper pair in terms of the Fermi velocity vF ≡
|~∇kεk||kF and the binding energy ∆.

Hints: (1) Don’t forget to normalize the wavefunction. (2) Show that
∫
ddrr2|ψ(r)|2 =∫

d̄dk|~∇ψ(k)|2. (3) Assume the Fermi surface is round, that vF and the density

of states vary slowly near the Fermi energy, and that εa � εF .

2. Non-BCS superconductivity. In this problem we describe a series of uncon-

trolled approximations which display d-wave superconductivity in a model with

repulsive interactions; it is something like a model of a cuprate superconductor.

Recall that starting from the Hubbard model on the square lattice at half-filling

with strong repulsive interactions U � t, we derived an effective antiferromag-

netic spin-spin interaction, by the superexchange mechanism. Now consider in-

troducing into this system a small finite density of holes. That is, we decrease

the filling fraction from half-filling. This will require some of the sites to be un-

occupied. It does not, however, require any of the sites to be doubly occupied.

An effective description incorporating this information is called the tJ-model:

HtJ = −t
∑
〈ij〉

(
c†iσcjσ + c†jσciσ

)
+ J

∑
〈ij〉

~Si · ~Sj

where ~Si = 1
2
c†iσ~σciσ and J = 4t2/U . The first term describes the hopping of the

holes, and the second term describes an interaction between the spins.

(a) Using the identity
∑

a σ
a
αβσ

a
γδ = −2εαγεβδ+δαβδγδ, show that the interaction

can be rewritten as

~S1 · ~S2 = a
(
εαγc

†
1αc
†
2γ

)(
εβδc1βc2δ

)
+ bc†1αc1αc

†
2βc2β. (1)

Find a, b.
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The first term in (1) is written in a way that suggests a BCS factorization. The

second term we will simply ignore without justification1. So we will consider the

model

HtJ−BCS ≡ −t
∑
〈ij〉

(
c†iσcjσ + c†jσciσ

)
+ aJ

∑
〈ij〉

(
εαγc

†
1αc
†
2γ

)(
εβδc1βc2δ

)
.

(b) To develop a mean field theory for this model, we will study

HMF = −t
∑
〈ij〉

(
c†iσcjσ + c†jσciσ

)
+aJ

∑
〈ij〉

(
∆?
ijεαβciαcjβ + ∆ijεαβc

†
iβc
†
jα − |∆ij|2

)

where ∆ij = −
〈
εαβciαcjβ

〉
. Convince yourself that the groundstate |MF〉

of this hamiltonian provides a useful trial wavefunction for HtJ−BCS.

(c) Check that ∆ij = ∆ji.

(d) Assume a translation-invariant solution: ∆ij = ∆i−j = ∆j−i. This reduces

the number of parameters to two: ∆x,∆y associated with x-links and y-links.

Write HMF in terms of Fourier modes and ∆k = ∆x cos kx + ∆y cos ky.

(e) Construct the groundstate |MF〉 of HMF by a Bogoliubov transformation.

(f) Compute 〈c−k↓c−k↑〉 ≡ 〈MF| c−k↓c−k↑ |MF〉.

(g) Show that the self-consistency condition

∆δ =
∑
k

〈c−k↓c−k↑〉 cos kδ (2)

(δ = x, y) is the same as the condition obtained by minimizing the ground-

state energy with respect to ∆x,y.

(h) [Bonus problem] The self-consistency condition (2) involves some unfriendly

integrals. By doing these integrals numerically, find a solution with ∆x =

−∆y at small hole-doping. This is a d-wave superconductor.

3. No anti-damping in equilibrium. Consider a system governed by a hamilto-

nian H0 in its groundstate. Poke the system by a small perturbation of definite

frequency and wavenumber via a (time-independent) operator OB,

H = H0 + V, V =

∫
ddxϕ(x, t)OB(x) =

∫
ddxeiq·x−iωtϕ(q, ω)OB(q).

1A further warning which is irrelevant for actually doing this problem: if we actually project out

the doubly-occupied states, the cs are no longer canonical fermion operators. We will nevertheless

treat them as such below.
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(a) Show that the rate of work done on the system is

dW

dt
=

d

dt
trρ(t)H = trρ(t)∂tV.

(b) Show that this is
dW

dt
=

∫
ddx∂tϕ(x, t) 〈OB〉 .

Using our result for linear response, relate this to the retarded Green’s

function GR
OBOB

.

(c) Now consider the time-averaged work done per unit volume

dw

dt
≡ 1

V

dW

dt

where X ≡ ω
2π

∫ 2π/ω

0
dtX(t). Using the fact that GR(q, ω)? = GR(−q,−ω),

show that
dw

dt
= 2ω|ϕ(q, ω)|2ImGR

OBOB
(q, ω).

(d) Using the relation to the spectrum of the theory, conclude that the average

work done on the system is positive.

4. One-dimensional atoms.

(a) Brain-warmer. Consider an electron in a one-dimensional ‘atom’ where

the Coulomb potential has been replaced by a delta function:

H =
p2

2
− Zδ(x) ≡ T + V.

Find the groundstate energy E0 and verify the virial theorem:

E0 = −〈T 〉 = +
1

2
〈V 〉 (3)

(b) Prove the virial theorem (3) for this example as follows: Argue that in any

energy eigenstate 〈[H, xp]〉 = 0. Then evaluate [H, xp] in terms of T and V .

For the rest of the problem, we consider the analog of the helium atom, with

H = +
1

2
p2
1+

1

2
p2
2 − Zδ(x1)− Zδ(x2) + δ(x1 − x2).

The idea is that the two terms proportional to Z are like the potential from the

nucleus, while the last term is the inter-electron interaction.
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(c) First, ignore the last term and find the groundstate for spinful electrons.

Next, treat the last term as a perturbation and find the ground-state energy

to first order.

(d) Now use the variational method to improve the estimate of the previous

part. Use a trial wavefunction which allows for ‘screening,’ i.e. that the full

value of Z may not be seen by the electrons. Find the minimal value of 〈H〉.
(e) Here is the fun part of this problem. Consider the Hartree self-consistent

field ansatz

Ψ(x1, x2) = φ(x1)φ(x2)

(times an appropriate spin wavefunction). Explain what is the spin wave-

function and why we do not need Hartree-Fock here. Show that

− 1

2
∂2xφ− Zδ(x)φ(x) + φ3 = εφ (4)

with 〈H〉 = 2ε− 〈δ(x1 − x2)〉. Find the normalized analytic solution to (4)

and show that

〈H〉Hartree = −
(
Z − 1

4

)2

− 1

48
.

Compare to the results from the previous parts.

5. Self-consistent field for Helium. Implement the Hartree-Fock method for the

groundstate of Helium.

(a) Convince yourself that Hartree and Hartree-Fock are the same in this case.

Explain.

(b) Show that the Hartree equations can be written as

− 1

2
~∇2φ+

(
−Z
r

+ U(r)

)
φ(r) = εφ(r) (5)

with

U(r) =

∫
d3r′
|φ(r′)|2

|r − r′|
. (6)

Note that the self-consistent potential (6) is automatically spherically sym-

metric, so the Central-Force Approximation is exact here.

(c) Show that the groundstate energy in this approximation can be written as

E0 = 2ε+ 4π

∫ ∞
0

r2|φ(r)|2U(r),

where U(r) is the self-consistent potential in (6), and ε is the eigenvalue in

(5).
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(d) Find the form of U(r) in (6) for the variational ansatz using hydrogen or-

bitals. This is a good starting point for an iterative solution of these equa-

tions.

Hint: to do the integrals, use

1

|r12|
=

1

r>

∞∑
`=0

P`(cos θ)

(
r<
r>

)`
(where θ is the angle between ~r1 and ~r2, and r> = max(|r1|, |r2|)) and the

orthonormality of the Legendre polynomials.

(e) The fun part. [Bonus problem] Actually implement the solution of the

self-consistent equations (5), (6) numerically. The expected value of the

groundstate energy is E0 = −2.86168. What do you find?
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