University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 211C (239) Phases of Quantum Matter,

 Spring 2021Assignment 2 - Solutions

Due 12:30pm Wednesday, April 14, 2021
Thanks for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. $\pi_{1}(G)$ is abelian. [Optional] Complete the proof that for any Lie group (or, if you like, more generally any topological group) $\pi_{1}(G)$ is abelian by finding a homotopy between $f \star g$ and $g \star f$.

One way to do it following the hint from lecture is to first show that $f \star g \simeq f g$ (where $(f g)(t)=f(t) g(t)$ is the pointwise multiplication of group elements), and then show $f g \simeq g f$.
Here is a homotopy between $f g(t)$ and $(f \star g)(t)$:

$$
F_{1}(t, s)= \begin{cases}f(2 t) g(2 t s), & 0 \leq t \leq \frac{1}{2} \\ g((1-s) 2 t+2 s-1), & \frac{1}{2} \leq t \leq 1\end{cases}
$$

At $s=0$ this is $f \star g$, at $s=1$ this is $f g$. Notice that it is continuous at $t=\frac{1}{2}$, since $F_{1}\left(\frac{1}{2}, s\right)=g(s)$ from both sides.

And here is a homotopy between $f g$ and $g f$:

$$
F_{2}(t, s)=g(s t) f(t) g(t) g^{-1}(s t)
$$

At $t=1$ it is $g(s) g^{-1}(s)=e$. At $s=1$ it is $g(t) f(t)$.
A homotopy similar to F_{1} then takes $g f$ to $g \star f$.
Thanks to Ahmed Akhtar, Arghadip Koner, Meng Zeng, and Zhengdi Sun for help with this problem.
2. [This problem is optional] Suppose we have a system with symmetry $G=\mathrm{SU}(2) \times$ $U(1)_{Y}$ which is broken down to $\mathrm{U}(1)_{Q}$, where the unbroken subgroup is generated by

$$
Q=p T_{3}+r Y
$$

for some integers p, r with no common factor. Here $T_{3}^{(i)}$ means a generator of $\mathrm{SU}(2)$ and we normalize T_{3} and Y so that their smallest nonzero eigenvalue is
one. Show that there are stable codimension-two defects which can disappear in clumps of r.

Further bonus problem: Can you find an example of a linearly-transforming order parameter that produces this pattern of symmetry-breaking?
We need to show that

$$
\pi_{1}(V)=\mathbb{Z}_{r}
$$

where $V=G / H$.
A useful way to think about this problem is focus on the $\mathrm{U}(1)_{3} \times \mathrm{U}(1)_{Y}$ subgroup of $G=\mathrm{SU}(2) \times \mathrm{U}(1)_{Y}$ generated by T_{3} and Q. Draw this $T^{2}=S^{1} \times S^{1}$ as a square with opposite sides identified. (The S_{3}^{1} circle is actually contractible in $\left.\mathrm{SU}(2) \simeq S^{3}.\right)$

To use our formula $\pi_{1}(G / H)=\pi_{0}(H) / \pi_{0}(G)$ requires that G is simply connected, so let's think about the universal cover \hat{G} of G, which is $\hat{G}=\operatorname{SU}(2) \times \mathbb{R}$, and is connected $\pi_{0}(\hat{G})=0$. In the universal cover of G, the orbit of the two generators T_{3} and Y is replaced by $\mathrm{U}(1)_{3} \times R$, a whole row of these squares, with only top and bottom identified.

Now draw the image of $\mathrm{U}(1)_{Q}$ in each of these two spaces. In the single square, its image has a single connected component. It winds p times around one direction and r times around the other, like this (for $p=3, r=5$):

In $U(1)_{3} \times R$, in contrast, this locus has r connected components:

Therefore

$$
\pi_{1}(V)=\pi_{1}(\hat{G} / \hat{H})=\pi_{0}(\hat{H}) / \pi_{0}(\hat{G})=\pi_{0}(\hat{H})=\mathbb{Z}_{r}
$$

A more direct method was suggested by Zhengdi Sun: Let's try to gauge fix, i.e.choose representatives of the cosets. Write an element of the numerator as $\left(g, e^{\mathbf{i} \theta_{Y}}\right)$, which transforms into $\left(e^{\mathbf{i} p T^{3} \theta} g, e^{\mathbf{i}\left(\theta_{Y}+r \theta\right)}\right)$ under a $\mathrm{U}(1)_{Q}$ rotation. So choose $\theta=\frac{\theta_{Y}}{r}+\frac{2 \pi k}{r}$ to set the second entry to unity. Here $k=0 . . r-1$ is undetermined by this choice. The representative is then $\left(e^{\frac{\mathrm{i} \frac{T^{3}\left(\theta_{Y}+2 \pi k\right)}{r}}{r}}\right.$, 1), which still has a residual \mathbb{Z}_{r} action from the choice of k. Therefore $V=\operatorname{SU}(2) / \mathbb{Z}_{r}$, which has $\pi_{1}(V)=\mathbb{Z}_{r}$ (and $\left.\pi_{2}(V)=0\right)$.
I got this problem and the next from Preskill's 1987 Les Houches lectures.
3. [This problem is also optional] Show that the Standard Model (SM) has no topologically-stable string or point-defect solutions.

For purposes of this question ${ }^{1}$, the SM can be regarded as an ordered medium that breaks $G=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}$ down to $\mathrm{SU}(3) \times \mathrm{U}(1)_{Q}$, where

$$
Q=T_{3}+Y
$$

with the same normalization of generators as in the previous problem.
In a previous version of this problem, I had written that $Q=\cos \theta_{W} \tau^{3}+\sin \theta_{W} Y$, where $\tan \theta_{W}=g / g^{\prime}$ is the Weinberg angle, an irrational number. I was thinking that in order for the covariant derivative $\left(\partial_{\mu}-i g W_{\mu}^{a} \tau^{a}-\frac{1}{2} i g ? Y_{\mu}\right) \phi$ to actually be covariant, the transformation of ϕ under G must be

$$
\begin{equation*}
\phi \rightarrow e^{i g \alpha^{a} \tau^{a}+\frac{1}{2} i g ? \alpha_{Y}} \phi \tag{1}
\end{equation*}
$$

where α^{a}, α_{Y} parametrize the $S U(2) \times U(1)_{Y}$ transformation. If that?s correct, then the subgroup that?s unbroken when $\phi=(0, v)$ is when $g \alpha^{3}+\frac{1}{2} g ? \alpha_{Y}=0$ $(\bmod 2 \pi)$. This much is all true.

However, you can see from (1) that the compactness relations of $S U(2)$ and $U(1)$ are satisfied not by α^{a} and α^{Y} but by $g \alpha^{a}$ and $g ? \alpha^{Y}$. That is, we can just absorb g an g ? into the definitions of the gauge parameters, $\lambda^{a} \equiv g \alpha^{a} \in[0,4 \pi)$ and $\lambda_{Y} \equiv g ? \alpha_{Y} \in[0,2 \pi)$. The unbroken generator is just $Q=\tau^{3}+Y$. I?m sorry for the confusion. There is a very misleading statement in the QFT textbook by Ryder on this subject.
So this is really just the $r=1$ case of the previous problem on HW 2.
We conclude $\pi_{1}(G / H)=\pi_{0}(\hat{H})=0$, so there are no strings. $\pi_{2}(G / H)=\pi_{1}(\hat{H})$ is also trivial.

[^0]A cheap but effective way to arrive at this same answer is to note that the role of the order parameter field is played by the Higgs field $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ which is a doublet of $S U(2)$ and is charged under $U(1)_{Y}$. The minima of the potential lie at

$$
V=\left\{v=|\Phi|^{2}=\sum_{\alpha}\left(\operatorname{Re}\left(\Phi_{\alpha}\right)^{2}+\operatorname{Im}\left(\Phi_{\alpha}\right)^{2}\right)\right\}=S^{3} .
$$

And $\pi_{2}\left(S^{3}\right)=0=\pi_{1}\left(S^{3}\right)$.

[^0]: ${ }^{1}$ In the SM, these groups are actually gauge groups, and not symmetries. However, this only affects the energetics of the topological defects.

