University of California at San Diego – Department of Physics – Prof. John McGreevy Physics 211C (239) Phases of Quantum Matter, Spring 2021 Assignment 3

Due 12:30pm Friday, April 23, 2021

Thanks for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Consider a biaxial nematic in 2 spatial dimensions, in the presence of two iX disclinations and a iY disclination. (Here I am choosing a base point and measuring the homotopy class of each of the defects by the image of a path starting at the pre-image of the base point, and going around only that defect.)

Consider a path γ_0 that goes around the two **i**X disclinations, so that the holonomy around the path is **i**X · **i**X = -1.

Now deform the configuration to move one of the $\mathbf{i}X$ disclinations in a circle around the $\mathbf{i}Y$ disclination. As you do this, deform the path γ_0 so that it continues to go only around the two $\mathbf{i}X$ disclinations. Now decompose the final path into a sequence of paths going only around one defect at a time (by deforming parts of the path to the base point). What element of Q_8 do you find?

2. Consider the term

$$S_0[A] = \int d^d x dt A_\mu j^\mu(x,t).$$

Show that this is gauge invariant, *i.e.* invariant under

$$A_{\mu} \to A_{\mu} + g^{-1} \partial_{\mu} g$$

with an arbitrary smooth map g: spacetime $\rightarrow U(1)$, as long as the current j is conserved, $\partial^{\mu} j_{\mu} = 0$.

3. According to our result for its vacuum manifold V = G/H, what are the pointlike and string-like topological defects of the A-phase of ³He?

This is a bit of an open-ended question. Here are two concrete parts of it:

(a) Show that the charge-(-2) superfluid vortex line

$$\hat{d} = \hat{z}, \ e^{(1)} + \mathbf{i}e^{(2)} = (\hat{x} + \mathbf{i}\hat{y})e^{-\mathbf{i}2\varphi} = (\hat{\rho} + \mathbf{i}\hat{\varphi})e^{-\mathbf{i}\varphi}$$

can be homotoped (through axisymmetric configurations) to a smooth configuration (with the same winding far away). (Above I am using cylindrical coordinates ρ, φ, z in \mathbb{R}^3 .) The final smooth configuration at $\rho = 0$ is

$$\hat{d} = \hat{z}, \ e^{(1)} + \mathbf{i}e^{(2)} = (-\hat{x} + \mathbf{i}\hat{y})e^{-\mathbf{i}2\varphi} = (-\hat{\rho} + \mathbf{i}\hat{\varphi})e^{-\mathbf{i}\varphi}.$$

More generally, it is

$$\hat{d} = \hat{z}, \ e^{(1)} + \mathbf{i}e^{(2)} = (-\hat{z}\sin\eta(\rho) + \hat{\rho}\cos\eta(\rho) + \mathbf{i}\hat{\varphi})e^{-\mathbf{i}\varphi}$$

where $\eta(\rho)$ is a function that interpolates between $\eta(\rho = 0) = \pi$ and $\eta(\rho = \infty) = 0$, such as $\cos \eta(\rho) = 1 - 2e^{-\rho/\rho_0}$ for some core size ρ_0 . (First check that this configuration is indeed smooth at $\rho = 0$. Hint: write the real and imaginary parts in terms of \hat{x} and \hat{y} .)

(b) Show using the long exact sequence of relative homology that

$$\pi_2(V_A, V_A^{\text{wall}}) = \mathbb{Z}$$

where V_A is the vacuum manifold of the A-phase, and V_A^{wall} is the vacuum manifold at a boundary to which $\hat{\ell}$ is restricted to be normal.

4. Vacancies. [bonus problem] A vacancy is simply a lattice site in a crystal that is missing its atom. A vacancy is freely mobile, but cannot be destroyed locally. How are these properties reflected in the effective action $S[A, \theta]$?