University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 211C (239) Phases of Quantum Matter, Spring 2021 Assignment 3

Due 12:30pm Friday, April 23, 2021
Thanks for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Consider a biaxial nematic in 2 spatial dimensions, in the presence of two $\mathbf{i} X$ disclinations and a $\mathbf{i} Y$ disclination. (Here I am choosing a base point and measuring the homotopy class of each of the defects by the image of a path starting at the pre-image of the base point, and going around only that defect.)

Consider a path γ_{0} that goes around the two $\mathbf{i} X$ disclinations, so that the holonomy around the path is $\mathbf{i} X \cdot \mathbf{i} X=-11$.

Now deform the configuration to move one of the $\mathbf{i} X$ disclinations in a circle around the $\mathbf{i} Y$ disclination. As you do this, deform the path γ_{0} so that it continues to go only around the two $\mathbf{i} X$ disclinations. Now decompose the final path into a sequence of paths going only around one defect at a time (by deforming parts of the path to the base point). What element of Q_{8} do you find?
2. Consider the term

$$
S_{0}[A]=\int d^{d} x d t A_{\mu} j^{\mu}(x, t)
$$

Show that this is gauge invariant, i.e. invariant under

$$
A_{\mu} \rightarrow A_{\mu}+g^{-1} \partial_{\mu} g
$$

with an arbitrary smooth map g : spacetime $\rightarrow \mathbf{U}(1)$, as long as the current j is conserved, $\partial^{\mu} j_{\mu}=0$.
3. According to our result for its vacuum manifold $V=G / H$, what are the pointlike and string-like topological defects of the A-phase of ${ }^{3} \mathrm{He}$?

This is a bit of an open-ended question. Here are two concrete parts of it:
(a) Show that the charge-(-2) superfluid vortex line

$$
\hat{d}=\hat{z}, \quad e^{(1)}+\mathbf{i} e^{(2)}=(\hat{x}+\mathbf{i} \hat{y}) e^{-\mathbf{i} 2 \varphi}=(\hat{\rho}+\mathbf{i} \hat{\varphi}) e^{-\mathbf{i} \varphi}
$$

can be homotoped (through axisymmetric configurations) to a smooth configuration (with the same winding far away). (Above I am using cylindrical coordinates ρ, φ, z in \mathbb{R}^{3}.) The final smooth configuration at $\rho=0$ is

$$
\hat{d}=\hat{z}, \quad e^{(1)}+\mathbf{i} e^{(2)}=(-\hat{x}+\mathbf{i} \hat{y}) e^{-\mathbf{i} 2 \varphi}=(-\hat{\rho}+\mathbf{i} \hat{\varphi}) e^{-\mathbf{i} \varphi} .
$$

More generally, it is

$$
\hat{d}=\hat{z}, \quad e^{(1)}+\mathbf{i} e^{(2)}=(-\hat{z} \sin \eta(\rho)+\hat{\rho} \cos \eta(\rho)+\mathbf{i} \hat{\varphi}) e^{-\mathbf{i} \varphi}
$$

where $\eta(\rho)$ is a function that interpolates between $\eta(\rho=0)=\pi$ and $\eta(\rho=$ $\infty)=0$, such as $\cos \eta(\rho)=1-2 e^{-\rho / \rho_{0}}$ for some core size ρ_{0}. (First check that this configuration is indeed smooth at $\rho=0$. Hint: write the real and imaginary parts in terms of \hat{x} and \hat{y}.)
(b) Show using the long exact sequence of relative homology that

$$
\pi_{2}\left(V_{A}, V_{A}^{\text {wall }}\right)=\mathbb{Z}
$$

where V_{A} is the vacuum manifold of the A-phase, and $V_{A}^{\text {wall }}$ is the vacuum manifold at a boundary to which $\hat{\ell}$ is restricted to be normal.
4. Vacancies. [bonus problem] A vacancy is simply a lattice site in a crystal that is missing its atom. A vacancy is freely mobile, but cannot be destroyed locally. How are these properties reflected in the effective action $S[A, \theta]$?

