
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 211C (239) Phases of Quantum Matter,
Spring 2021

Assignment 4 – Solutions

Due 12:30pm Monday, May 3, 2021

Thanks for following the submission guidelines on hw01. Please ask me by email if

you have any trouble.

Abelian Chern-Simons problems.

1. Under a large U(1) gauge transformation,

a→ a− ig−1dg

find the variation of the U(1) Chern-Simons action on a closed 3-manifold M

S0[a] =

∫
M

k

4π
a ∧ da .

Conclude that in the absence of other interestingness (such as degenerate ground-

states not coming from the dynamics of a), the level k must be an even integer.

Let’s write ω = dφ = −ig−1dg. This is a closed form, dω = 0, but it is not

exact, since φ is not necessarily a globally well-defined function (it can jump by

2π anywhere).

The variation is δS0 = k
4π

∫
M
ω∧da. You might be tempted to integrate by parts

and say dω = 0 and therefore this vanishes. But a is not globally well-defined, so

it’s not true that d of something involving a has to vanish on a closed manifold. A

familiar example is
∫
S2 F = 2π for the sphere surrounding a magnetic monopole.

We can argue that 1
2π

∫
ω∧da is 2π times an integer by following the logic we used

earlier when we studied the variation of Sν [θ, A]: first show that it’s topological,

in the sense of independent of local variations of its arguments, then evaluate it

on nice configurations where we can do the integral.

The first step follows because both ω and da are closed. For the second step, we

can choose a nice 3-manifold, such as S1 × S2, where the period of the circle is

L and the coordinate is t (t ≡ t + L). Consider a field configuration where the

gauge flux is constant in t. If we take g = e
2πit
L , then ω = 2π

L
dt, we find

δS0 = − k

4π

∫ L

0

2π

L
dt

∫
S2

f︸ ︷︷ ︸
∈2πZ

∈ πkZ.
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Therefore, k must be an even integer, if there is nothing else around to make

the amplitude gauge invariant. But, you say, we’ve been talking about the case

k = 1 all the time as a description of the integer QHE! The answer is that the

theory with odd k does make sense, but only if the system is fermionic. We’ll

come back to this later.

I apologize for the misleading problem statement.

2. For the abelian Chern-Simons theory with gauge group U(1) at level k,

S[a,A] =

∫ (
k

4π
a ∧ da+A ∧ da

2π

)
.

do the (gaussian!) path integral over a to find the effective action for the back-

ground field A. Find the Hall conductivity.

See the next problem.

3. Now do it for the general K matrix and general charge vector tI , with

S[aI ,A] =

∫ (
KIJ

4π
aI ∧ daJ +A ∧ tI

daI

2π

)
.

Let’s just do it all at once. The path integral is∫
[Da]eiS[a,A] = eiSeff[A].

Since the Hall conductivity is a local quantity, let’s just put the system on the

plane or the sphere, where there is no opportunity for a to create any topological

mischief, and we can just do the integral. Complete the square in the exponent:

i

∫ (
KIJ

4π
aI ∧ daJ +A ∧ tI

daI

2π

)
= i

∫
KIJ

4π

(
aI +

(
K−1

)IK
tKA

)
d
(
aJ +

(
K−1

)JL
tLA

)
− KIJ

4π

((
K−1

)IK
tKA

)
d
((
K−1

)JL
tLA

)
.

Now change variables in the integral aI → aI + (K−1)
IK
tKA. On the plane this

is fine, and the integral is just a constant. All that is left is

Seff = −tI
(
K−1

)IJ
tJ

∫
A ∧ dA

4π
.

We conclude that the Hall conductivity is

σxy =
e2

h
tI
(
K−1

)IJ
tJ .
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4. Flux attachment. Now consider

Sj[A] =

∫ (
k

4π
a ∧ da+ a ∧ ?j

)
.

Find the equations of motion. Show that the Chern-Simons term attaches k units

of flux to the particles: F12 ∝ ρ.

5. Anyons. Show using the Bohm-Aharonov effect that the particles whose current

density is jµ have anyonic statistics with exchange angle π
k

(supposing they were

bosons before we coupled them to A).

One way to do this is to consider a configuration of j which describes one particle

adiabatically encircling another. Show that its wavefunction acquires a phase

ei2π/k. This is twice the phase obtained by going halfway around, which (when

followed by an innocuous translation) would exchange the particles.

See the next problem.

6. Describe the statistics of the anyonic quasiparticles in the case with general K

matrix.

The EoM are
KIJ

2π
daJ = ?jI

which means daI = 2π (K−1)
IJ
? jJ . Bringing anyon one with charge l1 all the

way around anyon two with charge l2 gives the phase

Φ2π = (l1)I

∮
C

aI = (l1)I

∫
R,∂R=C

2π
(
K−1

)IJ
(ρ2)J = 2π (l1)I

(
K−1

)IJ
(l2)J .

The exchange phase is half of this.
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