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Thanks for following the submission guidelines on hw01. Please ask me by email if

you have any trouble.

1. Quasiparticle wavefunctions.

(a) Use the parton construction of the Laughlin ν = 1
m

state to construct wave-

functions for the quasihole and quasiparticle.

(Hint: add or remove a single parton. Don’t forget to project onto the lowest

Landau level.)

A simple (parton-independent) way to motivate the quasihole wavefunction

is to find the wavefunction that results by threading 2π flux at the point w

in the complex plane. (We saw earlier that on general grounds, if the state is

gapped, this produces an excitation with statistics πσxy.) Threading 2π flux

at w means that the wavefunction should acquire the phase eiθ when we move

any of the electrons around the point w: zi − w → eiθ(zi − w), ∀i = 1..N .

A very easy way to accomplish this is to multiply the wavefunction by the

factor
N∏
i=1

(zi − w) .

That’s it. No need for an LLL projection, since it’s still holomorphic. The

full wavefunction for a quasihole at w is then

Ψ̃w(z) =
N∏
i=1

(zi − w)
N∏
i<j

(zi − zj)me
−

∑
i
|zi|

2

4`2
B .

Notice that this is still a wavefunction for N electrons.

The quasiparticle wavefunction should acquire the opposite phase, so we’d

like to multiply by
N∏
i=1

(z̄i − w̄)
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but that’s not an LLL wavefunction. The projection of this to the LLL is

the quasiparticle wavefunction.

Ψ̃w̄(z) = PLLL
N∏
i=1

(z̄i − w̄)
N∏
i<j

(zi − zj)m =
∏
i

(
2`2
B∂zi − w̄

)∏
i<j

(zi − zj)m.

Let’s try acting on the parton groundstate with a single parton annihilation

operator, fα(w), where α is a species label on the partons: c =
∏

α fα. The

problem with this idea is that it removes a parton. But the projection to

the gauge invariant Hilbert space requires that there be the same number

of electrons as each type of parton, so that the state has a nonzero overlap

Ψ(r) = 〈0|
∏

i c(ri) |parton state〉.
If we act with a single creation operator f †(η), we must start occupying the

second parton Landau level, so that’s a good sign that we’ll need an LLL

projection.

But I conclude that at the moment I don’t know how to motivate the Laugh-

lin quasihole and quasiparticle wavefunctions from partons. Please let me

know if you do.

(b) Construct a wavefunction with two quasiholes and use it to verify their

statistics.

This calculation was first done here.

The state is

Ψ̃12(z) =
∏
i=1

(zi − w1)
∏
i=1

(zi − w2)
∏
i<j

(zi − zj)m.

Let’s compute the Berry connection for varying w1:

Aw1 = 〈Ψ12| i∂w1 |Ψ12〉 = 〈Ψ12|
∑
i

i

w1 − ẑi
|Ψ12〉 .

The Berry phase accumulated by moving w1 in a circle (of radius, say

R)around w2 is then

γ12 ≡
∮
Cw2

dw1Aw1 = 〈Ψ12| i
∮
Cw2

dw1

∑
i

1

w1 − ẑi
|Ψ12〉 = 〈Ψ12| (−2π)

∑
i

Θ(ẑi ∈ Cw2) |Ψ12〉

where we used Cauchy’s theorem, and

Θ(s) ≡

{
1, if the statement s is true

0, else
.
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This last expression is the average number of electrons inside the circle of

radius R about w2 (times −2π). If there were no quasihole at w2, this

would be (for large enough R) just −2πν Φ
Φ0

, where Φ =
∫
Cw2

~B · d~a is the

flux through the circle. This contribution is not necessarily 2π times an

integer and I think should be regarded as some background noise.

The presence of the quasihole at z = w2 decreases the electron density. It

decreases the expected number of electrons in the neighboring region by 1
m

1,

and therefore the contribution from w2 to the Berry phase is γ12 = −2π 1
m

.

The quasihole exchange phase is then

θ12 =
γ12

2
=
π

m
= πν.

2. Hall plateaux as a crazy manifestation of quantum oscillations. Check

the claim that the hierarchy states at fillings ν = ν?

2ν?±1
for ν? ∈ Z can be regarded

as an extreme version of quantum oscillations in the HLR state at ν = 1
2
.

We work at fixed electron density ρ throughout, so B and ν are related by ρ =

νB/Φ0. Write B = Bν= 1
2

+ δB = 2Φ0ρ+ δB, so

δB = Φ0ρ

(
1

ν
− 2

)
.

If 1
δB

= ±ν? 1
ρΦ0

, we find

± 1

ν?
=

1

ν
− 2

which indeed gives the relation for the states at the first level of the hierarchy.

3. Charges of quasiparticles in abelian CS EFT.

1Here I am appealing to a result from the plasma analogy. The charge density

ρ(z, z̄) =

∫ N∏
i=2

d2zi|Ψw(z, z2 · · · zN )|2 =

∫ N∏
i=2

d2zie

∑
1<i<j log |zi−zj |2+

∑
1<i log |z−w|

2−
∑

i
|zi|

2

2`2
B

in the quasihole wavefunction is the density of a one-component plasma of charge-m objects (with

logarithmic mutual interactions) that see a neutralizing background (that’s the quadratic term) plus

an extra potential from a fixed impurity of positive unit charge at z = w. As Girvin and Yang say

(page 447), ‘the chief desire of the plasma is to maintain charge neutrality’. This is accomplished by

forming a screening cloud near z = w to screen the impurity. Screening the cloud requires a deficit

of 1/mth of a charge-m particle. Those particles sit at the electron positions, so this is 1/mth of an

electron missing.
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In an abelian CS theory with K-matrix K, show that a quasiparticle with charge

`I under CS gauge field aI has electric charge

ql = tK−1l.

The EFT for a charge at the origin is

L =
1

4π
KIJa

IdaJ +
1

2π
AtIda

I + `Ia
I
0δ

2(x).

The EOM for aI0 is

0 =
δS

δa0

=
1

2π
Kda+ `δ2

so

da = 2πK−1`δ.

The source for A0 is then

1

2π
tIda

I = tK−1`δ2(x).

4. Excitations of hierarchy states. Find the torus groundstate degeneracy, and

the charges and statistics of the quasiparticle excitations of the abelian incom-

pressible FQH state at ν = 2
5
.

This state is described by the hierarchy construction with m = 3 and ν? = 2.

The EFT is

4πL = 3ada+ 2Ada+ 2adã+ 2ãdã,

that is the K-matrix is

K =

(
k 1

1 k̃

)
and the charge vector is t = (1, 0). You can check that indeed the Hall conduc-

tivity is tK−1t = 2
5
.

detK = 5

so the torus GSD is 5-fold.

A single qp with charge `I under aI = (a, ã) has electric charge

tK−1`.

For ` = (1, 0), this gives q = 2
5

and for ` = (0, 1), this gives q = −1
5
.
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