University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 211C (239) Phases of Quantum Matter, Spring 2021
 Assignment 5- Solutions

Due 12:30pm Monday, May 10, 2021
Thanks for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Quasiparticle wavefunctions.

(a) Use the parton construction of the Laughlin $\nu=\frac{1}{m}$ state to construct wavefunctions for the quasihole and quasiparticle.
(Hint: add or remove a single parton. Don't forget to project onto the lowest Landau level.)
A simple (parton-independent) way to motivate the quasihole wavefunction is to find the wavefunction that results by threading 2π flux at the point w in the complex plane. (We saw earlier that on general grounds, if the state is gapped, this produces an excitation with statistics $\pi \sigma^{x y}$.) Threading 2π flux at w means that the wavefunction should acquire the phase $e^{\mathbf{i} \theta}$ when we move any of the electrons around the point $w: z_{i}-w \rightarrow e^{\mathrm{i} \theta}\left(z_{i}-w\right), \forall i=1 . . N$. A very easy way to accomplish this is to multiply the wavefunction by the factor

$$
\prod_{i=1}^{N}\left(z_{i}-w\right)
$$

That's it. No need for an LLL projection, since it's still holomorphic. The full wavefunction for a quasihole at w is then

$$
\tilde{\Psi}_{w}(z)=\prod_{i=1}^{N}\left(z_{i}-w\right) \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{m} e^{-\sum_{i} \frac{\left|z_{i}\right|^{2}}{4 e_{B}^{2}}} .
$$

Notice that this is still a wavefunction for N electrons.
The quasiparticle wavefunction should acquire the opposite phase, so we'd like to multiply by

$$
\prod_{i=1}^{N}\left(\bar{z}_{i}-\bar{w}\right)
$$

but that's not an LLL wavefunction. The projection of this to the LLL is the quasiparticle wavefunction.

$$
\tilde{\Psi}_{\bar{w}}(z)=\mathcal{P}_{L L L} \prod_{i=1}^{N}\left(\bar{z}_{i}-\bar{w}\right) \prod_{i<j}^{N}\left(z_{i}-z_{j}\right)^{m}=\prod_{i}\left(2 \ell_{B}^{2} \partial_{z_{i}}-\bar{w}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{m} .
$$

Let's try acting on the parton groundstate with a single parton annihilation operator, $f_{\alpha}(w)$, where α is a species label on the partons: $c=\prod_{\alpha} f_{\alpha}$. The problem with this idea is that it removes a parton. But the projection to the gauge invariant Hilbert space requires that there be the same number of electrons as each type of parton, so that the state has a nonzero overlap $\Psi(r)=\langle 0| \prod_{i} c\left(r_{i}\right) \mid$ parton state \rangle.
If we act with a single creation operator $f^{\dagger}(\eta)$, we must start occupying the second parton Landau level, so that's a good sign that we'll need an LLL projection.
But I conclude that at the moment I don't know how to motivate the Laughlin quasihole and quasiparticle wavefunctions from partons. Please let me know if you do.
(b) Construct a wavefunction with two quasiholes and use it to verify their statistics.
This calculation was first done here.
The state is

$$
\tilde{\Psi}_{12}(z)=\prod_{i=1}\left(z_{i}-w_{1}\right) \prod_{i=1}\left(z_{i}-w_{2}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{m} .
$$

Let's compute the Berry connection for varying w_{1} :

$$
\mathcal{A}_{w_{1}}=\left\langle\Psi_{12}\right| \mathbf{i} \partial_{w_{1}}\left|\Psi_{12}\right\rangle=\left\langle\Psi_{12}\right| \sum_{i} \frac{\mathbf{i}}{w_{1}-\hat{z}_{i}}\left|\Psi_{12}\right\rangle .
$$

The Berry phase accumulated by moving w_{1} in a circle (of radius, say R) around w_{2} is then
$\gamma_{12} \equiv \oint_{C_{w_{2}}} d w_{1} \mathcal{A}_{w_{1}}=\left\langle\Psi_{12}\right| \mathbf{i} \oint_{C_{w_{2}}} d w_{1} \sum_{i} \frac{1}{w_{1}-\hat{z}_{i}}\left|\Psi_{12}\right\rangle=\left\langle\Psi_{12}\right|(-2 \pi) \sum_{i} \Theta\left(\hat{z}_{i} \in C_{w_{2}}\right)\left|\Psi_{12}\right\rangle$
where we used Cauchy's theorem, and

$$
\Theta(s) \equiv \begin{cases}1, & \text { if the statement } s \text { is true } \\ 0, & \text { else }\end{cases}
$$

This last expression is the average number of electrons inside the circle of radius R about w_{2} (times -2π). If there were no quasihole at w_{2}, this would be (for large enough R) just $-2 \pi \nu \frac{\Phi}{\Phi_{0}}$, where $\Phi=\int_{C_{w_{2}}} \vec{B} \cdot d \vec{a}$ is the flux through the circle. This contribution is not necessarily 2π times an integer and I think should be regarded as some background noise.
The presence of the quasihole at $z=w_{2}$ decreases the electron density. It decreases the expected number of electrons in the neighboring region by $\frac{1}{m}{ }^{1}$, and therefore the contribution from w_{2} to the Berry phase is $\gamma_{12}=-2 \pi \frac{1}{m}$. The quasihole exchange phase is then

$$
\theta_{12}=\frac{\gamma_{12}}{2}=\frac{\pi}{m}=\pi \nu
$$

2. Hall plateaux as a crazy manifestation of quantum oscillations. Check the claim that the hierarchy states at fillings $\nu=\frac{\nu^{\star}}{2 \nu^{\star} \pm 1}$ for $\nu^{\star} \in \mathbb{Z}$ can be regarded as an extreme version of quantum oscillations in the HLR state at $\nu=\frac{1}{2}$.
We work at fixed electron density ρ throughout, so B and ν are related by $\rho=$ $\nu B / \Phi_{0}$. Write $B=B_{\nu=\frac{1}{2}}+\delta B=2 \Phi_{0} \rho+\delta B$, so

$$
\delta B=\Phi_{0} \rho\left(\frac{1}{\nu}-2\right)
$$

If $\frac{1}{\delta B}= \pm \nu^{\star} \frac{1}{\rho \Phi_{0}}$, we find

$$
\pm \frac{1}{\nu^{\star}}=\frac{1}{\nu}-2
$$

which indeed gives the relation for the states at the first level of the hierarchy.

3. Charges of quasiparticles in abelian CS EFT.

[^0]in the quasihole wavefunction is the density of a one-component plasma of charge-m objects (with logarithmic mutual interactions) that see a neutralizing background (that's the quadratic term) plus an extra potential from a fixed impurity of positive unit charge at $z=w$. As Girvin and Yang say (page 447), 'the chief desire of the plasma is to maintain charge neutrality'. This is accomplished by forming a screening cloud near $z=w$ to screen the impurity. Screening the cloud requires a deficit of $1 / m$ th of a charge $-m$ particle. Those particles sit at the electron positions, so this is $1 / m$ th of an electron missing.

In an abelian CS theory with K-matrix K, show that a quasiparticle with charge ℓ^{I} under CS gauge field a^{I} has electric charge

$$
q_{l}=t K^{-1} l .
$$

The EFT for a charge at the origin is

$$
L=\frac{1}{4 \pi} K_{I J} a^{I} d a^{J}+\frac{1}{2 \pi} A t_{I} d a^{I}+\ell_{I} a_{0}^{I} \delta^{2}(x)
$$

The EOM for a_{0}^{I} is

$$
0=\frac{\delta S}{\delta a_{0}}=\frac{1}{2 \pi} K d a+\ell \delta^{2}
$$

so

$$
d a=2 \pi K^{-1} \ell \delta .
$$

The source for A_{0} is then

$$
\frac{1}{2 \pi} t_{I} d a^{I}=t K^{-1} \ell \delta^{2}(x)
$$

4. Excitations of hierarchy states. Find the torus groundstate degeneracy, and the charges and statistics of the quasiparticle excitations of the abelian incompressible FQH state at $\nu=\frac{2}{5}$.
This state is described by the hierarchy construction with $m=3$ and $\nu^{\star}=2$. The EFT is

$$
4 \pi L=3 a d a+2 A d a+2 a d \tilde{a}+2 \tilde{a} d \tilde{a},
$$

that is the K-matrix is

$$
K=\left(\begin{array}{ll}
k & 1 \\
1 & \tilde{k}
\end{array}\right)
$$

and the charge vector is $t=(1,0)$. You can check that indeed the Hall conductivity is $t K^{-1} t=\frac{2}{5}$.

$$
\operatorname{det} K=5
$$

so the torus GSD is 5 -fold.
A single qp with charge ℓ^{I} under $a^{I}=(a, \tilde{a})$ has electric charge

$$
t K^{-1} \ell
$$

For $\ell=(1,0)$, this gives $q=\frac{2}{5}$ and for $\ell=(0,1)$, this gives $q=-\frac{1}{5}$.

[^0]: ${ }^{1}$ Here I am appealing to a result from the plasma analogy. The charge density

 $$
 \rho(z, \bar{z})=\int \prod_{i=2}^{N} d^{2} z_{i}\left|\Psi_{w}\left(z, z_{2} \cdots z_{N}\right)\right|^{2}=\int \prod_{i=2}^{N} d^{2} z_{i} e^{\sum_{1<i<j} \log \left|z_{i}-z_{j}\right|^{2}+\sum_{1<i} \log |z-w|^{2}-\sum_{i} \frac{\left|z_{i}\right|^{2}}{2 \ell_{B}^{2}}}
 $$

