University of California at San Diego - Department of Physics - Prof. John McGreevy
Physics 211C (239) Phases of Quantum Matter, Spring 2021 Assignment 6

Due 12:30pm Wednesday, May 19, 2021
Thanks for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Boson Integer Quantum Hall State from Partons.

Consider a system made from two species of bosons, $b_{\uparrow}, b_{\downarrow}$. They could be two layers. We'll assume that only the total boson number, acting by $\left(b_{\uparrow}, b_{\downarrow}\right) \rightarrow$ $e^{\mathbf{i} \alpha}\left(b_{\uparrow}, b_{\downarrow}\right)$ is conserved, and couple to a background field \mathcal{A} for that symmetry.
(a) Consider the parton ansatz:

$$
b_{\uparrow}=f_{0} f_{\uparrow}, \quad b_{\downarrow}=f_{0} f_{\downarrow} f_{1} f_{2}
$$

where all the $f \mathrm{~s}$ are fermionic partons. There are three $\mathrm{U}(1)$ gauge fields that glue these partons back together, and the charge assignments are as follows:

	a_{1}	a_{2}	a_{3}	\mathcal{A}	Chern \# in Phase 1	Chern \# in Phase 2	Chern \# in Phase 3
f_{\uparrow}	1	0	0	1	1	1	1
f_{\downarrow}	1	1	0	1	1	1	1
f_{0}	-1	0	0	0	-1	-1	-1
f_{1}	0	-1	1	0	-1	-1	-1
f_{2}	0	0	-1	0	-1	0	1

Also in the table are the Chern numbers of the bands filled by each of the partons in three distinct phases. (Only the Chern number of f_{2} changes.) Identify the three phases, and describe the critical theories separating them. Hint: I recommend describing the parton currents in terms of dynamical gauge fields $j_{\mu}^{(\alpha)}=\frac{1}{2 \pi} \epsilon_{\mu \nu \rho} \partial_{\nu} b_{\rho}^{(\alpha)}$, where $\alpha=\uparrow, \downarrow, 0,1,2$.
(b) For this part of the problem, let's retreat to the continuum. Consider the simpler parton ansatz:

$$
b_{\uparrow}=f_{0} f_{\uparrow}, \quad b_{\downarrow}=f_{0} f_{\downarrow}
$$

where all the $f \mathrm{~s}$ are fermionic partons. Choose the $\mathrm{U}(1)_{\mathcal{A}}$ to be charges $q_{0}=2, q_{\uparrow}=-1, q_{\downarrow}=-1$.
Consider an equal number N of b_{\uparrow} and b_{\downarrow} particles, so that the total filling fraction is $\nu=2$. How many f_{0} particles are there, and how many $f_{\downarrow}, f_{\uparrow}$ particles are there?
Write a candidate groundstate wavefunction $\Psi\left(r_{i}^{\uparrow}, r_{i}^{\downarrow}\right)$ for the bosons.
(c) Bonus question: why does the simpler ansatz of the previous part produce a wavefunction in the same phase as one of the phases of the first part?
(d) Actually, here is a simpler description of the same phase diagram, closer to what I said in lecture. Consider a single species of boson, with the simple parton ansatz with $b=d_{1} d_{2}$ in terms of two fermions. Let d_{1} and d_{2} fill Chern bands with total Chern number c_{1} and c_{2}. Fix $c_{1}=-1$. Consider what happens when $c_{2}=2$.
Describe the effective field theory of d_{2} filling two bands with chern number 1 by introducing two gauge fields each with CS term $\frac{1}{4 \pi} b_{a} d b_{a}$.

