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In this paper, we review some criteria for when an abelian, gapped, two-dimensional (2D) electron
system without any symmetries has protected, gapless edge modes [1]. The primary result is that
such systems only have gapped boundaries if there is a collection of bulk quasi-particles that have
trivial mutual statistics with eachother, but non-trivial mutual statistics with particles outside of
the collection. If no such collection exists, then the boundary must have protected, gapless edge
modes.

I. INTRODUCTION

The general phenomena of gapless, protected edge
modes at the boundary of gapped phases is ubiquitous
in the condensed matter literature, occuring, for exam-
ple, in topological insulators and superconductors, and
in quantum Hall states [2–5]. These different topologi-
cal materials seemingly have disparate mechanisms and
criteria for the existence, and robustness, of their edge
modes. What was less well known prior to the publica-
tion of [1] was exactly when a 2D gapped electron system,
without any symmetries, has protected edge modes. A
partial answer can be found by studying the thermal hall
conductivity KH at low temperatures,

KH = (nL − nR) · π
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where nL and nR are the number of modes of left and
right chirality, respectively. Hence, when KH 6= 0, the
edge is protected because in general any perturbation
will gap left and right moving modes in equal numbers
(assuming energy conservation is not broken). More in-
terestingly, it turns out that systems with KH = 0 can
still have protected edge modes, provided that they sup-
port fractionalized quasiparticles. The main result of [1]
is that a gapped edge is possible (in a electron system
with abelian statistics and KH = 0) if and only if there
exists a set of quasi-particle typesM (called a Lagrangian
subgroup of L, the full bulk quasi-particle spectrum) sat-
isfying two properties:

C1: The particles in M have trivial mutual statistics.

C2: Any particle that is not inM has non-trivial mutual
statistics with at least one particle in M.

Conversely, if there exists no suchM, then a gapped edge
is impossible i.e. the system has protected, gapless edge
modes.

As an example, consider the fractional quantum hall
states ν = 2/3 and ν = 8/9, each coupled separately
to a superconductor, thereby breaking charge conserva-
tion at the edge. Both systems have KH = 0. However,
only the ν = 2/3 edge is protected because the fraction-
alized quasi-particle types in the bulk don’t allow for a

Lagrangian subgroup that meets the above two condi-
tions, whereas for ν = 8/9 they do.

This paper will be structured as follows: in II, we will
summarize the three main arguments put forward in [1]
to prove the above claim on when a gapped edge is possi-
ble. The first argument follows from a microscopic anal-
ysis of the edge and proves the criteria are sufficient but
not necessary for a gapped edge. The next two arguments
follow from quasi-particle braiding relations and modular
invariance, and they prove that the criteria is necessary
for a gapped edge but not sufficient. Together, the three
answers prove the desired result. In III, we refer to some
articles that extend the work presented in this paper.

II. THREE ARGUMENTS

First, let us show that the conditions C1, C2 are suffi-
cient for a gapped edge using a microscopic analysis. The
low-energy physics is described by a U(1)p Chern-Simons
(CS) theory with p × p integer K-matrix. We assume
p = 2N and K has zero signature (otherwise the edge is
known to be protected). The quasi-particle excitations of
this system can be labelled by their p-component, integer
charge vectors l under the CS gauge fields, and their mu-
tual stastics are given by θll′ = 2πlTK−1l′. Excitations
with an integer number of electrons are given by charge
vector KΛ where Λ ∈ Zp (notice that these always have
±1 exchange statistics). Since this is a system made out
of electrons, it should host a topologically trivial quasi-
particle with π exchange statistics, which means one of
the diagonal elements of K should be odd.

We can now translate the conditions C1, C2 into con-
ditions on the charge vectors M = {m}. Essentially, the
first condition says that mTK−1m′ ∈ Z ∀m,m′ ∈ M,
and the second condition says mTK−1l /∈ Z if l is not
equivalent to any vector in M, and m ∈ M. To prove
that these conditions are sufficient for a gapped bound-
ary, let us assume that there exists such an M. Then
there exists a set of N integer vectors Λi such that
ΛTi KΛj = 0 for all i, j, and we can gap out the edge
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by adding backscattering terms to the boundary [1].

N∑
i=1

U(Λi), U(Λ) = U(x) cos(ΛTKφ− α(x))

The microscopic approach relies on abstract mathemat-
ical facts, and so now we turn to a braiding statistics
argument that shows that the criteria are necessary and
also provides some physical intuition. Consider a gapped
2D electron system with a gapped edge, and let M be
the set of bulk quasi-particle excitations that can be an-
nihilated (or condensed) at the edge with some local op-
erators. Suppose we start in the ground state |Ψ〉, where
we create m, m̄ ∈ M in the bulk, transport them along
a curve β to two distant sites a, b on the edge, and then
act with local operators Ua, Ub to annihilate them, re-
turning us to the ground state. Let Wmβ = UaUbWmβ

implement this on the groundstate.
Now suppose we repeat this process with two sets of

anyons m, m̄ and m′, m̄′ along paths β and γ, respec-
tively, as indicated in Fig. 1. On the ground state, Wmβ

and Wm′γ commute since they both act trivially. How-
ever, commuting Wmβ and Wm′γ generally will produce
a factor related to their mutual statistics eiθmm′ . That
means if both m,m′ annihilate on the boundary, they
must have trivial mutual statistics.

Suppose further that anyon l /∈M is a nontrivial quasi-
particle and does not annihilate on the boundary. If l has
trivial statistics with each m ∈M, how would we detect
it away from the boundary? Both the edge and bulk are,
by assumption, gapped, and therefore have a finite corre-
lation length. Anyons are only detectable from far away
via Aharanov-Bohm measurements, so if it has trivial
statistics with every boundary excitation, we would have
no way of knowing it’s there. Therefore, it must have
nontrivial mutual statistics with at least one m ∈ M.
The experiment that would detect this phase is indicated
in Fig. 2. This concludes the argument that a gapped 2D
electron system with gapped boundary must satisfy con-
ditions C1, C2.

The last argument presented in [1] involves modular
invariance–the strategy is to use the fact that any 1D
CFT realized by a lattice model must be modular invari-
ant to prove the existence ofM for a gapped electron sys-
tem. Let us recall the meaning of modular invariance in
CFTs. Consider a 2D conformal field theory defined on
a torus of “shape” τ ∈ C, so that z ≡ z+1 ≡ z+τ . Since
two tori of shapes τ and −1/τ are conformally equivalent
to one another, the CFT partition function must satisfy
Z(τ) = Z(−1/τ) [6]. This puts various constraints on
the operator content of the theory.

To use CFT, we put the system in a semi-infinite plane
with −∞ < x < ∞,−Ly/2 < y < Ly/2, and make the
top edge gapless and the bottom gapped. Again, takeM
to be the set of quasi-particles that can be annihilated at
the gapped edge. The gapless edge can be modelled by

L =
1

4π
∂xφI(KIJ∂tφJ − VIJ∂xφJ)

where K is again a 2N × 2N integer, symmetric matrix
describing the bulk theory. We can change variables and
tune the interactions on the edge so that so that all the
modes propogate at the same speed |v| and the top edge
is described by a conformal field theory.

What are the allowed scaling operators in this sys-
tem? One set of operators involves derivatives of
the primary fields, and can be written as OnJ,k

=∏2N
J=1

∏∞
k=1(∂kxφJ)nJ,k . These operators are charge neu-

tral. However, we can also have charged operators eil
Tφ,

provided that l is equivalent to some m ∈ M. The
reason is that such charged operators implement an-
nihilation (or creation) of fractionalized quasiparticles,
which in general is not allowed in the low energy the-
ory, unless that excitation can be deposited at the lower
gapped edge as part of a tunneling process. Therefore,
the most general scaling operators describing this system

are ei(m+KΛ)TφOnJ,k
.

With this insight we can now apply the machinery of
CFT and modular invariance to put conditions on M.
The first step is to decompose the partition function into
sums over operators labelled by m, and then to use a
transformation law and modular invariance to get an
equation in terms of the modular S matrix, which we
assume on general grounds is equivalent to the topologi-
cal S matrix whose matrix elements characterize the bulk
quasi-particle braiding statistics.

Z(τ) =
∑
m∈M

Zm(τ) = Z(−1/τ) =
∑

m∈M,l∈L

SmlZl(τ)

The above equation implies that
∑
m∈M Sml = δl∈M

from which the conditions C1, C2 immediately follow [1].

III. CONCLUSION

In this paper, we presented some criteria for when a
gapped 2D electron system has a gapped boundary; tak-
ing the contrapositive, when know when it has protected
edge modes. There are various extensions of the above
argument. The extension to bosonic systems is presented
in an appendix in [1] and is argumentatively similar. The
main focus of this paper was for abelian systems, but one
can also consider the non-abelian case. Gapped bound-
aries and domain walls in abelian and non-abelian topo-
logical orders in 2D can be examined in terms of a tun-
nelling matrix for anyon types, or through the Frobenius
algebra of the boundary condensate [7–10]. The general
framework for exploring more general topological phases
and topological phase transitions can be found in Levin-
Wen models [11]. The previous arguments precluded sys-
tems with symmetry. Incorporating symmetry, the exis-
tence and robustness of edge modes falls under the study
of symmetry-protected topological phases [12], a vast and
rich subject that is continuing to develop.
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Appendix A: Figures

FIG. 1. Figure three in [1]. Image (a) depicts a process where
a quasi-particle and its inverse m, m̄ are created in the bulk,
transported along β to the gapped boundary, and annihilated
by local operators Ua, Ub supported on the grey circles. We
assume that this is possible using local operators because the
bulk and the boundary are gapped. Image (b) depicts a pro-
cess where two bulk quasiparticles which annihilate on the
boundary are created in pairs, m, m̄ and m′, m̄′. The oper-
ators that implement this process only intersect once on the
worldlines of the anyons, which is why their commutator in-
volves the mutual statistics of m,m′.

FIG. 2. Figure four in [1]. Image (a) depicts a property
of non-trivial bulk quasi-particles–if l cannot be annihilated
in the bulk, then it must have non-trivial mutual statistics
with some bulk quasi-particle m. Otherwise, it would not
be detectable from far away. Image (b) depicts a version of
that property for the boundary–if l cannot be annihilated at
the edge, it must have non-trivial mutual statistics with some
quasi-particle m which can be. Otherwise, there is no way to
detect it at the edge from far away.
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