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Nodal-line metal is a field which attracts numerous attentions while many detail aspects of it is
still remain unknown. Recent study shows that some special Nodal-line system can be described by
topological charges. Some general cases also displays non-Abelian topology. In this short essay, I
summarize the result from multiple publication which describe such system, using the language of
homotopy group.

I. INTRODUCTION

The topic of nodal-line and nodal-chain metals had
been widely discussed in the past. However, many of the
properties of nodal-line and nodal-chain metals are still
unknown. A type of topological invariant, non-Abelian
charge of nodal lines has been discovery under momen-
tum space of metals with weak spin-orbit coupling with
time-reversal (T ) and parity (P) symmetry has been dis-
covered [1]. The author in this paper claims that this
type of non-Abelian topology in k-space is different from
the non-Abelian statistics of anions since the former one
does not depend on any kind of interactions, nor su-
perconductivity. Furthermore, the analogy between the
nodal-line under PT symmetry and non-Abelian vortex
lines in biaxial nematic liquid has also been made. In
order to discuss non-abelian charge generated from the
system we firstly need to understand the basic definitions.

A. Nodal Line Degeneracy

Nodal line is the line degeneracy of electron energy
band near the Fermi energy. We may start from a very
basic two-band model to explain it and furthermore set
the foundation for the discussion of non-Abelian topology
mentioned in previous paragraph: two-band system.

In general, for any two-band system, we may write the
Hamiltonian in k-space as

H(k) = h0(k)1+ ~h(k) · ~σ (1)

where ~σ = (σx, σy, σz) composed of 3 Pauli matrices and
1 is 2 × 2 unit matrix. Moreover we have a constraint
on ~h = (hx, hy, hz) that three components are all real
functions. In the introduction part it is mentioned that
we are interested in the system with spin-orbit coupling
absent. Under this scenario, we can set PT = K, which
is the complex conjugation. The system with such sym-
metry should include constraint that removes σy term
from original Hamiltonian (Eq.1). Therefore in order to
obtain degeneracy, we need the constraint that

hx(k) = hz(k) = 0 (2)

which includes two independent constraints and solution
should be a line in 3-d momentum space.

We may go further with some elaboration on the 2-
band system we are discussion in previous section, with
a mirror symmetry added: mz : z 7→ −z, which corre-
sponds to operator m̂z = σz, which makes the hx in Eq.1
an odd function and hz an even function of kz. The paper
[1] offers a set of examples:

hx(k) = kxkz , hz(k) = ±k2x + k2y ± k2z − b2 (3)

with b a constant. By solving the equation 2 we may
obtain the nodal line for this system, visually shown in
Fig.1 A-D (In the figure b is set to be 2). In the figure
we may identify that there are two nodal-lines(marked in
red in each subfigure) crossing with each other: one in
symmetry plane (xy plane) and another outside.

II. RELATION TO HOMOTOPY THEORY

We may normalized the general Hamiltonian in previ-
ous system as

H = 1− 2 |u◦k〉 〈u◦k| (4)

with |u◦k〉 the cell-periodic component of the two-
component Bloch function corresponding to the lower
band. Therefore we may construct the Hamiltonian in
this format using planar vector. However the symme-
try K = PT added a ”gauge redundancy” upon the sign
of state or the vector (mapping |u◦k〉 7→ − |u◦k〉 will not
change anything). Therefore we may identify the order-
parameter space as M(1,1) = S1/Z2 ' S1 and the loop
around linear defect under such space is described by ho-
motopy group

π1(M(1,1)) = Z (5)

in this case is exactly the winding number. Meanwhile,
since mirror symmetry m̂z = σz separate regions in pa-
rameter space into two sets with different m̂z eigenvalue
of |u◦k〉, which can only be ±1 = Z2. Taking λ◦k as the
eigenvalue with k specified so we may cut any loop going
through the symmetry plane into two halves, each has
two endpoints k1 and k2 on symmetry plane. By setting
λkλk = 1 we may also set a winding number (imagining
closing from trivial line inside symmetry plane) to each
half loop. The closed image generated by connecting the
half-loop with its self reflection will for a complete loop
with twice of winding number [2].
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FIG. 1. Figure A-D: Plot for nodal lines under different sign for hz (in lower-right corner); Figure E,F: Plot for nodal line
without mirror symmetry

III. NON-ABELIAN TOPOLOGY

Similarly to what we did in previous section, we can
expand to case of general N -band scenario: Let’s set N =
3. By spectrum decomposition we may write hamiltonian
as

HN (k) =

N∑
j=1

εj

∣∣∣ujk〉〈ujk∣∣∣ (6)

which forms a parameter space spanned by unit vector
chosen in basis {ujk}. Also similar to last section, we no-

tice that transformation
∣∣∣ujk〉 7→ − ∣∣∣ujk〉 also keep Hamil-

tonian unchanged so the space is written as

M3 = SO(3)/D2 (7)

and the fundamental group reads

π1(M3) = Q = {±1,±j,±i,±k} (8)

which is the quarternion group.

IV. CONCLUSION

In this paper, I summarized the definition of Nodal-line
degeneracy which happens in many metals and their re-
lation with topology charges discovered in some research
[1–3]. Moreover in this paper I have also introduced the
difference between topological charges embedded in sys-
tem with two band and three band and the non-Abelian
nature of 3-band case.
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