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The paper describes how to construct generalized string-net models, a class of exactly solvable
lattice models that realize a large family of 2D topologically ordered phases of matter. The ground
states of these models can be visualized as superpositions of different ”string-net configurations”.
Each string-net configuration is a trivalent graph with labeled edges, drawn in the xy plane. Here,
unlike the original string-net construction, one can relaxe the tetrahedral reflection symmetry re-
quirement by specifying an appropriate gauge choice. By this generalized string-net model con-
struction, one can analyze the Fibonacci string-net model, which is an example of a non-abelian
string-net. Please see the full paper if interested DOI: 10.1103/PhysRevB.103.195155.

INTRODUCTION

One of the greatest triumphs in many-body physics is
the description of Landau’s theory of symmetry breaking.
For many years, it was thought that Landau’s theory of
symmetry breaking could describe nearly all phases and
phase transitions. However, in recent decades, it was
realized that a new type of order, namely the topolog-
ical order, is beyond the scope of Landau’s theory. In
order to give a description of the topological phases of
matter, tensor category formalism is introduced. Within
the tools of tensor category, one can analyze the topo-
logical phases of matter using a well-established method
called (original) string-net construction. Here in this pa-
per, we introduce a generalized string-net construction
which has the following advantages: (i)all the properties
of these constructions are using simple algebraic calcula-
tions that do not require any knowledge of tensor cate-
gory; (ii) under an appropriate choice of the generalized
string-net construction no longer requires the tetrahedral
reflection symmetry

Moreover, we will use the generalized string-net con-
struction to solve the Fibonacci string-net model, which
is a non-abelian string-net model, then classify the quasi-
particle excitations by their statistics.

GROUND STATE WAVE FUNCTION

The ground state |Φ〉 =
∑
X∈HΦ(X)|X〉 of our models

is a superposition of different string-net configurations
|X〉 in H. The state |Φ〉 is described implicitly by the
constraint equations in fig[1].

These equations are defined in the Hilbert space H
where the configurations on both sides of the equations
satisfy branching rules at every vertex. Here a, b, c, ...
are arbitrary string types (including the null string types)
and the shaded regions represent arbitrary string-net con-
figurations which are not changed from one side of the
equation to the other. The symbol δc,d = 1 if c = d

and δc,d = 0 otherwise. The parameters F abcdef , F̃
abc
def are

complex numbers that depend on 6 string types a, b, ..., f

FIG. 1: Local constraint equations

obeying the appropriate branching rules: δabe = δecd =

δbcf = δafd = 1. Likewise, Y abc is a complex number that
depends on three string types a, b, c obeying the branch-
ing rule δabc = 1.

Then, by using the convention that:

Φ(vacuum) = 1 (1)

One can relate the amplitude of any string-net config-
urations to the amplitude of the vacuum using the op-
eration introduced in fig[1]. Thus, once the parameters
{F abcdef , F̃

abc
def , Y

ab
c } are given, the rules determine the wave

function completely.

Here, the input data {F abcdef , F̃
abc
def , Y

ab
c } must satisfies

the self -consistent conditions which can be understood
graphically:

Algebraically, the self -consistent rules can be written
as:
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FIG. 2: Two dfferent ways to relate the amplitude of (a) to
the amplitude of (c). Consistency requires the two sequences
of operations give the same result.

F fcdegl F
abl
efk =

∑
h

F abcgfhF
ahd
egk F

bcd
khl (2)

F̃ abcdef = (F abcd )−1
fe

Y abe Y ecd
Y bcf Y afd

(3)

F abcdef = F̃ abcdef = 1 if a or b or c = 0 (4)

Y abc = 1 if a or b = 0 (5)

Eqs.(2) (3) (4) (5) are the only conditions that we will
impose on{F abcdef , F̃

abc
def , Y

ab
c }.

QUASIPARTICLE EXCITATIONS

Once the parameters {F abcdef , F̃
abc
def , Y

ab
c } is given. One

can identify a set of stringoperators {Wα(P )}, which act
along oriented paths P . We require each string operator
to act on the string-net ground state in a way that is path
independent. When {Wα(P )} is applied to a string-net
state 〈X|, its action is described graphically by adding a
string labeled by α along the path P under the preexist-
ing string-nets:

FIG. 3: Path operation rules.

After finding the quasiparticles, one can compute the
braiding statistics, which can be described by the S ma-
trix Sαβ and the topological spins θ(α). In terms of string
operator:

Sαβ =
1

D

∑
stb

Tr(Ω̄t,ssbα )Tr(Ω̄t,ttbβ )db (6)

Here, we have used a formula that expresses the quan-
tum dimension of α in terms of string operator data,
namely:

dα =
∑
s

nα,sds (7)

RELATIONSHIP WITH ORIGINAL STRING-NET
CONSTRUCTION AND THE TETRAHEDRAL

REFLECTION SYMMETRY

In this section, we relate this general string-net con-
struction to the original string-net construction intro-
duced in Ref.[1]. More precisely, we can find a rela-
tionship between the input data {F, Y } introduced here
and {F̄ , d̄} from the original construction method. Un-
der a special gauge choice ωa

√
da = νa, the relationship

is given by:

Y abc =
νaνb
νc

F ab̄bac0 =
νc
νaνb

F abcdef = F ēbf̄
d̄āc̄

νeνf
νaνc

= F d̄cbāēf = F bad̄c̄ef̄

(8)

The last equation of eqs.(8) could be understand
graphically. Under the original string-net construction,
the ground state amplitudes are required to be invariant
under the tetra hedral reflection fig[4]:

FIG. 4: Tetrahedral reflection of the string-net configuration

Algebraically, this can be written as:

F abcdefY bcfY
af
d Y dd̄0 = F ēbf̄

d̄āc̄
Y bf̄c̄ Y ēc̄d̄ Y dd̄0 (9)

Choosing the gauge Y abc =
√

dadb
dc

νaνb
νc

then plug this

into eq.(9), one can find that eq.(9) and the last equa-
tion of eqs.(8) are identical. In the original string-net
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construction, one must assume that the string-net model
is invariant under the tetrahedron rotation, however,
here we can relax this condition by fixing an appropriate
gauge. Therefore, tetrahedral reflection symmetry is no
longer assumed.

EXAMPLE:FIBONACCI STRING-NET MODEL

Consider a non-abelian example, namely the Fibonacci
string-net model. The string types in the Fibonacci
string net are {0, 1} where 0 is the vacuum string and
1 = 1̄ is self dual. The allowed branching rules are
{(0, 0 : 0), (0, 1 : 1), (1, 0 : 1), (1, 1 : 0), (1, 1 : 1)}. The
solution is given by

[F 111
1 ]ef =

[
1
d

1√
d

1√
d
− 1
d

]
ef

Y 11
0 = d, Y 11

1 =
√
d, otherF, Y = 1

d =
1 +
√

5

2

(10)

where e, f = 0, 1. This is expected, as the Fibonacci
string net can be realized by the original construction.

To find the quasiparticle excitations, we get four irre-
ducible solutions which correspond to four distinct quasi-
particles:

α = 1 : (nα,0, nα,1) = (1, 0)

Ω1,001
α = 1

α = 2 : (nα,0, nα,1) = (0, 1)

Ω1,110
α = e−i4π/5, Ω1,111

α = ei3π/5

α = 3 : (nα,0, nα,1) = (0, 1)

Ω1,110
α = ei4π/5, Ω1,111

α = e−i3π/5

α = 4 : (nα,0, nα,1) = (1, 1)

Ω1,110
α = 1, Ω1,001

α = −d−2, Ω1,111
α = d−2

Ω1,101
α = (Ω1,101

α )∗ =
√

3d− 4e−3iπ/10

(11)

All quasiparticles are self-dual α = ᾱ. And also, the
quantum dimensions of the quasiparticles are d1 = 1 and
d2 = d3 = d and d4 = d2. The topological spins and the
S matrix can be computed:

eiθ1 = 1, eiθ2 = e−i4π/5, eiθ3 = ei4π/5, eiθ4 = 1

S =
1

1 + d2


1 d d d2

d −1 d2 −d
d d2 −1 −d
d2 −d −d 1


(12)

The same result was found in Ref.[1].
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