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Crystallographic point groups are ubiquitous in study of solid state systems. However, they also
play an important role in understanding topological phases. SPTs can be classified based on what
patterns of quantum entanglement are protected by crystalline symmetries. Here we present two
frameworks for classification of crystalline SPTs. The first one is based on the geometrical structure
of the SPT, whereas the second one is based on response of the SPTs to elastic deformations. This
is set up on the usual way of topological terms in the effective action.

INTRODUCTION

A topological phase of matter is a gapped phase of mat-
ter characterized by - 1. degeneracy in the ground state,
2. fractional statistics, and 3. long range entanglement
in the ground state. These phases are characterized by
the pattern of this ground state entanglement and not by
broken symmetry. In these systems, there is an interplay
between topological features and microscopic symmetries
of the systems. States which are connected by smooth de-
formations in absence of symmetry, may now be distinct
based on the action of the symmetry group on the topo-
logical degrees of freedom. Based on a lattice model, the
symmetries can be divided into two classes – 1. internal
symmetries which include charge conservation, time re-
versal and spin rotation which act locally at the crystal
sites, and 2. spatial symmetries which include spa-
tial translation and rotations which moves lattice sites in
space. Topological phases respecting spatial symmetries
is called a crystalline topological phase.
There have been competing approaches for classification
of these crystalline topological phases (cSPTs). Two of
these include

1. The cSPTs characterized by point groups [1] and
invertible topological phases which refers to those
with no non trivial topological excitations, can be
understood in the framework similar to the cou-
pled layer construction[2]. It is conjectured that all
SPTs in dimension d protected only by crystalline
symmetries can be built from lower dimensional (k-
dimensional, 0 < k < d) blocks of invertible topo-
logical phases arranged in some spatial configura-
tion in a d dimensional space.

2. For non-invertible cSPTs i.e. those with non-
trivial topological excitations, the approach in-
volves smooth states – the states which vary in
space slowly (in a length scale longer than the lat-
tice spacing and correlation length) [3].

The framework using ‘defect networks’ as a generaliza-
tion of the block state picture for invertible SPTs to the
non-invertible ones [4] unifies the two frameworks and
provide a more robust way for the classification. In the

next section we shall try to understand these defect net-
works in more detail.

CLASSIFICATION USING DEFECT NETWORKS

Introduction to defect networks

A defect network consists of a G-symmetric network
of defects in a Gint-symmetric topological phase (where
Gint ≤ G is a subgroup of the internal symmetries [Fig.
1(a)].
A cSPT exists on a d-dimensional manifold X which rep-
resents the physical space in which the system is embed-
ded. Let X be acted upon by a symmetry group G. The
elements of G that act trivially on X represent the inter-
nal symmetries. Here, we have X = Rd and the group G
acts by the isometries of Euclidean space.
The geometrical picture of the crystalline topological
phase is referred to as the defect network. The defect
network is defined in terms of a cell decomposition of X
[Fig-1(b)]. We choose the cell decomposition of X such
that the image of a cell under the group action of G is also
a cell. For each cell Σ, let GΣ be the kernal of the group
action on Σ. In this framework, the cells are chosen to
be very large as compared to the lattice spacing and cor-
relation length. To classify crystalline phases we have to
classify the phase on the defect networks. The idea is the
following: classify the phase on the d−dimensional cells
→ classify the d− 2 dimensional defects in that phase →
for any configuration of the d− 1 dimensional defects on
d − 1 cells, classify the possible junctions on d − 2 cells
→ . . . and so on.
Next we talk about another ingrediant of the recipe -
smooth states.

Smooth states in a nutshell

A smooth states represent a certain kind of physical
states. The idea is this – in scales much less than a
radius of variation R, there is an approximate translation
symmetry. On scales small as compared to R, the state
varies very slowly with space. We define a smooth state
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FIG. 1: (a) A defect network in 2-D consists of a bulk topo-
logical phase, 1-D defects and 0-D defect junctions. In the
case where the 1-D defects are trivial, the 0-D defects are
just point defects. In higher dimensions, we can have higher
order junctions. (b) A cell decomposition of a manifold X.
The 2-cells carry a 2-D topological phase. The 1-D ones carry
defects and the 0-cells carry defect junctions.

on a spatial manifold X to be a map

f : X → Θd (1)

for some space Θd which is an abstraction of the
d−dimensional states in the neighborhood of a given
point. One nice interpretation of Θd is the following: A
point in the space Θd is a topological QFT. A continuous
path in Θd is an isomorphism between the QFTs, a
deformation between the paths is an equivalence be-
tween the isomorphisms, and so on. Now based on these
concepts we can use the symmetries on a smooth state
as a general classification of the crystalline phases.

Classification of cSPTs based on symmetries in a
smooth state

The classification of topological phases in d− dimen-
sions with internal symmetry G is given by homotopy

class of maps

f : BG→ Θd (2)

where, BG is the “classifying space” of a group G.
BG = EG/G upto homotopy equivalence, where EG is
any contractible space with a free action G. The classifi-
cation of topological phases in d−dimension with spatial
symmetry G that acts on the manifold X is given by the
homotopy class of maps

f : X//G→ Θd (3)

where X//G = (X × EG)/G is the homotopy quotient
of X by the action of G. The action of G is diagonal
on the product space (X × EG). In the case when
X = Rd, X//G and BG are homotopy equivalent. This
draws an equivalence between the action of internal
symmetries and the action of spatial symmetries on
X which gives the crystalline equivalence principle.
According to the crystalline equivalence principle[3],
classification of phases with spatial symmetry G has a
one-to-one correspondence with classification of phases
with the same symmetry G acting internally. One
example of this is a spatial symmetry such as reflection
which is unitary but orientation-reversing maps to an
anti-unitary internal symmetry such as time reversal.

Finally lets look at an example to end this discus-
sion. Let us consider the case where the only symmetries
are translation G = Z × Z. We can classify cSPTs
using the crystalline equivalence principle and then use
internal symmetries. In this case, the phases is classified
by a group homomorphism ρ = Z × Z → Aut(C),
where Aut(C) is a group of permutations of the
anyon labels that leaves the braiding statistics un-
changed, and by a symmetry fractionalization class
[ω] = H2

ρ(Z×Z, A) ∼= A/Aρ, where A is a Abelian group
of Abelian anyons, Aρ is the subgroup generated by
{(g · a− a) : a ∈ A, g ∈ G} and G acts on A according to
its image by ρ. This thus provide a way for classification
of SPTs.
Another approach for classification of cSPTs is by using
elasticity theory which admits quantized topological
terms. These terms have been shown to correspond to
distinct phases of matter. This has been explored in the
next section .

CLASSIFICATION USING ELASTICITY
THEORY

A general framework for studying SPTs in general is
by their response to background gauge fields. The idea
here to, instead, characterize SPTs using their response
to elastic deformations i.e. to phonons. This can even be
generalised to quasi-crystalline SPTs [5].
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An invertible topological phase in a d-dimensional lattice
with d spatial translations and a U(1) symmetry owing to
charge conservation has an integer topological invariant
ν (charge per unit cell). For a gapped state, with no
other spatial symmetry other than translation, and the
only internal symmetry U(1), LSMOH theorem dictates
an integer valued invariant ν which is the average charge
per unit cell. For a system with invariant ν, the response
to a elastic deformations and to a background gauge field
Aµ is characterized by a topological term in the effective
action. In addition to the kinetic terms, the Lagrangian
contains

L = L0 +
ν

2π
εµνεIAµ∂νθ

Idxdt (d = 1)

L = L0 +
ν

8π2
εµνλεIJAµ∂νθ

I∂λθ
Jd2xdt (d = 2)

L = L0 +
ν

48π2
εµνλσεIJKAµ∂νθ

I∂λθ
J∂σθ

Kd3xdt (d = 3)

as the topological term. Here µ, ν, ρ runs from 0, 1, . . . , d.
The phases θ1(x, t) and θ2(x, t) are related to the phonon
modes of the crystal. We see ν is the coefficient of the
quantized topological term in effective action describ-
ing the dynamics of the phonons under the long wave-
length elastic modes. These modes can be described by
a slowly-varying displacement field u(x, t) correspond-
ing to displacement of atoms from their equilibrium po-
sitions. The displacement field is related to the phase
angles θI(I = 1, . . . , d) as

u(x, t) =
1

2π
aIθ

I(x,t)− x (4)

where aI(I = 1, . . . , d) are a set of primitive lattice vec-
tors. For the action to be invariant under large gauge
transformations of A on a spacetime manifold, ν must be
an integer. For the topological term, various properties
can be derived. For d = 2 the charge density is

ρ =
δS

δA0
=

ν

8π2
εijεIJ∂iθ

I∂jθ
J , (5)

Here the i, j index runs from 1, 2, . . . , d. In equilibrium
(setting u = 0 in Eq.4 we get θI = KI

j x
i, where KI

i is the

inverse of the matrix 1
2πa

i
I with the columns as vectors

1
2πa

I . Plugging this in, we get

ρ =
ν

4π2
detK =

ν

Vunit
(6)

where Vunit =det(a) represents the volume of a unit cell.
As the topological term is a part of the effective theory
that describes the system on a length scale larger as com-
pared to the unit cell size, ρ represents average charge
density over a large length scale. This integer valued av-
erage charge density is what characterizes the cSPTs on
the basis of a elasticity theory. The microscopic charge
density can vary in the scale of unit cell and is not cap-
tured in this effective theory.

CONCLUSION

Here we have presented two separate ways for classifi-
cation of SPTs. The first approach is based on the crys-
tallographic equivalence principle which comes out of the
defect network picture. This approach unifies two sepa-
rately known ones basd on point groups and response to
gauging of the symmetry. The second approach is much
more physical and in based on the response of the cSPTs
to elastic deformations. The advantage of this method is
that it also generalises to quasicrystalline SPTs.
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