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In this note, we review the twist defect and use a simple example to demonstrate the non-Abelian
statistics among the twist defects. Then, the classification of the line defect is discussed. This
classification relies on the folding process and the criterion of the gapped edge modes.

I. INTRODUCTION

Topological states form a novel set of gapped quan-
tum states which are distinguished by topology instead
of symmetry, which implies that adding local perturba-
tion is unable to alter the physical properties of topo-
logical states. The robustness in topological state is es-
pecially useful in storing and processing quantum infor-
mation. One special topological state, known as non-
Abelian state, has been proposed to be utilized for in-
trinsically fault-tolerant quantum information storage.
The quantum operation can be achieved by adabatically
moving quasiparticles around. The braiding statistics be-
tween the quasiparticles is non-Abelian. Here, we review
an interesting realization of the non-Abelian quasiparti-
cles in the Abelian topological states. These quasiparti-
cles are extrinsic defects. One example of the extrinsic
defect is the lattice dislocation in the topological ordered
state or the bilayer systems[1–3]. One important dis-
tinction between the extrinsic defects and the intrinsic
quasiparticles is that the extrinsic defects are confined
excitations. Therefore, the energy cost to pull the point
defects apart is either logarithmically or linearly propor-
tional to their distance. This suggests that the overall
phase of the braiding statistics in the extrinsic defects
is not well-defined. Consequently, these extrinsic defects
form a projective representation of the braid group. In
contrast, the intrinsic quasiparticles form a linear rep-
resentation of the braid group. This opens a possibility
of the novel behaviors in the extrinsic defects. In the
rest of this note, we will first introduce a special extrin-
sic defect, the twist defect and investigate the braiding
statistics between the twist defects. Then, we will turn
to the classification of the extrinsic defects based on the
gapped edge mode.

II. WHAT IS A TWIST DEFECT?

A topological ordered phase is characterized by a set
of topologically nontrivial quasiparticles {γi} for i =
1, · · · , Nqp where Nqp is the number of quasiparticles.
Let’s describe the topological property of these quasipar-
ticles. The first is the fusion rule among two quasipar-
ticles (γi, γj). The idea is to view the combination of
these two quasiparticles as a linear combination of single

quasiparticle states,

γi × γj =
∑
k

Nk
ijγk (1)

The second is the gained phase eiθk
ij when two quasipar-

ticles {γi, γj} wind around each other. θkij tells us the in-
formation about the braid statistics between these quasi-
particles. For Abelian topological phase, Nk

ij is nonzero
for only value of k (see example in Appendix A).

After defining the topological ordered phase in terms
of the quasiparticles, we can further define the discrete
symmetry g in the topological ordered phase. The op-
eration of the discrete symmetry g is an automorphism
which maps a quasiparticle γi to another quasiparticle
γg(i) as γi → γg(i) for i = 1, · · · , Nqp. For example, the
ZN topological state (e.g. ZN Toric code) has N2 quasi-
particles which can be classified into two categories, the
electric and the magnetic particles. We can label these
quasiparticles as (a, b) where a, b = 0, · · · , N − 1. The
symmetry for this topological state is Z2 × Z2. The first
Z2 represents the exchange of the electric and magnetic
particles, (a, b) → (b, a). Another Z2 stands for the ex-
change between the quasiparticles and their conjugate
partners, (a, b) → (N − a,N − b).

Given a topological state with the discrete symmetry
g, we are eventually ready to define the twist defect with
the symmetry g. The twist defect is a point defect. For
convenience, we usually connect two twist defects with
a branch cut. The position of the branch cut is simply
a gauge choice. When the quasiparticle γi winds around
the twist defect, the quasiparticle would be mapped into
another quasiparticle γg(i). This twist defects can show
up at the dislocations in ZN topologically ordered models
and topological nematic states. Note that the symmetry
for the twist defect to carry depends on the starting topo-
logical state.

III. HOW DO THESE TWIST DEFECTS GIVE
NON-ABELIAN BRAID STATISTICS?

A straightforward way to show the braid statistics of
the twist defects is to move twist defects around and to
investigate the braid statistics. This procedure can be
done either in the bulk or from the edge theory [1]. Here,
I would like to start with a simple example with twist de-
fects and compute the quantum dimension of the twist
defect. The nontrivial quantum dimension would suggest
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a non-Abelian braid statistic between these twist defects.
Consider the case of bilayer decoupled 1/k Laughlin frac-
tional quantum hall layers. The Lagrangian is

4πL = KIJaIdaJ (2)

where KIJ is diagonal and the entries are both k. The
symmetry in this topological state is the exchange of the
layer indices. Since there are only two layers, this oper-
ation is Z2. Therefore, the twist defect also belongs to
Z2.

FIG. 1. The two distinct non-contractible loops when there
are two pairs of the twist defects [1].

FIG. 2. The 2(n − 1) distince non-contractible loops when
there is n pairs of the twist defects. Here, n = 4[1].

We put two pairs of Z2 twist defects in our sys-
tem. These two twist defects induce two distinct non-
contractible loops (shown in Fig. 1). The red/blue line
represents the trajectory of the quasiparticles in the up-
per/lower layer. Note that these two loops only cross
once since the quasiparticles at different layers commute
with each other. The braid statistics between these two
loops can be computed as

W (a)W (b) =W (b)W (a)e2πim
TK−1m =W (b)W (a)e

2πi
k

(3)
where m = (1, 0)T since this only involves the quasipar-
ticle in the upper layer. The irreducible representation
of this loop algebra is k-dimensional. Given n pairs of
twist defects, there would be 2(n − 1) non-contractible
loops (shown in Fig. 2). Thus, we have (n − 1) copies
of the loop algebra among quasiparticles (Eq. (3)). The
full dimension becomes kn−1. Suppose that the quantum
dimension of each twist defect is dt, the full dimension is
d2nt . By taking large n limit and equating kn−1 with d2nt ,
we can get the quantum dimension as dt =

√
k. When

k = 2, the quantum dimension is
√
2. This suggests that

a Majarona zero mode is localized at the twist defect.
The corresponding braiding statistics is the braiding of
Ising anyons.

IV. CLASSIFICATION BASED ON THE EDGE
THEORY

For the second half of this note, we will discuss the
classification of the general defects [3]. Here, the main
question is whether we can understand the defects in the
2 + 1 dimensional Abelian topological states. In 2 + 1
dimension, there can be two kinds of defects, the line
defect and the point defect. In this note, we will only
focus on the line defect.

A general line defect is a one dimensional boundary be-
tween two topological states, A1 and A2. For the branch
cut between the twist defects discussed in the previ-
ous sections, the two topological states are the same,
A = A1 = A2. Generally, these two topological phases
are distinct. For simplicity, we would fold the topological
state A2 onto A1. The resultant phases are trivial phase
and the phase of A1× Ā2 where Ā2 is the parity-reversed
of A2. Note that the folding process flips one of the axis.
Since there is no edge state on the trivial phase side, the
edge state behavior in the phase of A1 × Ā2 can be used
to classify the line defects.

A. Classification of Line Defect

We start with the classification of line defect. We only
consider line defects that correspond to gapped bound-
aries. How the edges gain mass from the interaction is
the main focus here. What is the form of the interac-
tion? The interaction considered here is the backscat-
tering term which stands for the interaction between left
and right moving fermions on the edge (ΨL,ΨR). The
fermion parity symmetry is preserved in the interaction.
The interaction form is defined as

Hint =
∑
i

gi cos(Λ
t
iKϕ) (4)

where Λi is a integer vector. Suppose there is no fur-
ther symmetry constraint, when can we gap out the edge
mode? This question is answered in Ref. [4, 5]. The
first criterion is that the number of left and right mov-
ing modes is equal. This criterion can be understood
from the mass generation mechanism from backscatter-
ing. The backscattering term can only gaps out the left
and right moving modes together. Note that the num-
ber of left/right moving modes is equal to that of the
positive/negative eigenvalues in K matrix. The second
criterion is a bit nontrivial. Suppose that there is 2N
edge modes, the second criterion commands that there
exists N linearly independent {Λi} such that ΛiKΛj = 0
for all i, j. In the language of backscattering interaction,
we need N terms to gap those 2N modes. Appendix B
shows two explicit examples (ν = 2/3 and ν = 8/9). The
ν = 8/9 edge can be gapped out if the charge conserva-
tion is broken. However, the ν = 2/3 edge is protected
in the sense that no single backscattering term can open
the gap.
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So far, we learn the criterions for the edges to be
gapped out by the backscattering interaction. Could we
understand these criterions in terms of the quasi-particles
in the bulk topological state? Ref. [3, 4] answered these
questions. The main connection is that each independent
vector Λi corresponds to a quasi-particle mi condensed
on the boundary. The relation between them is

Λi = ciK
−1mi (5)

where ci is the minimal integer to make Λi become an
integer vector. How do we know this m quasi-particle is
condensed? This can be seen from the interaction term
Eq. (4). The ground state condition pins down the phases
to satisfy

ΛT
i Kϕ = 2πni ⇒ cim

T
i ϕ = 2πni ⇒ mT

i ϕ = 2π
ni
ci

(6)

for ni ∈ Z. The quasi-particle operator on the edge is
given by

χmi
= eim

T
i ϕ ⇒ ⟨χmi

⟩ = e
2πi

ni
ci ̸= 0. (7)

This suggests that this quasi-particle mi is condensed
on the boundary line. Here, we can see the equivalence
between the gapped boundary and the condensed quasi-
particles on the boundary.

These condensed quasiparticles form a ”Lagrangian
subgroup”. To define the condensation consistently, this
subgroup must satisfy the following conditions:

1. eiθmm′ = 1 for all m,m′ ∈M

2. eiθml ̸= 1 for at least one m ∈M, if l /∈M.
(8)

The first condition means that every two particles in M
are mutually bosonic. Thus, they can be condensed si-
multaneously. The second condition commands that all
other quasiparticles not in M are confined after the con-
densation of all quasiparticles in M.

Here are some warnings of the loopholes in the descrip-
tion mentioned above. The first is how we can guaran-
tee that the relation between the quasiparticle mi in the
Lagrangian subgroup and the vector Λi (Eq. (5)) is satis-
fied. The second is whether the order of the Lagrangian

subgroup is N since we have N linearly independent Λi.
Ref. [3] proves a lemma which guaranteed the relation in
Eq. (5) by constructing a topologically equivalent K ′ ma-
trix. The K ′ matrix is built from enlarging the dimension
of K matrix without adding additional topological quasi-
particles. The new quasiparticle m′

i can be constructed
based how we build the matrix K ′. These new m′

i quasi-
particles satisfy the relation in Eq. (5). This enlarging
process also shows that the number of the left/right mov-
ing modes (this number is N in our setup) and the order
in the Lagrangian subgroup can be different.

Different Lagrangian subgroups represent different
kinds of gapped edge modes on the boundary. Since
we only consider the line defect that correspond to the
gapped edge, the Lagrangian subgroup can be utilized to
classify the line defects.

V. SUMMARY

In this note, we briefly review the braiding statistics
and the classification in extrinsic defects. For the braid-
ing statistics in the twist defect, we utilize a simple model
to exhibit the non-Abelian nature of these twist defects.
The detailed calculations from the bulk or the edge mode
picture can be found in [1]. The bulk picture utilizes a
useful mapping from the topological state with n defects
to a topological state without defect on a genus g = n
manifold. Effectively, we can think that the existence of
the twist defects creates the genus. Therefore, the twist
defect is also called genon. For the classification of line
defect, the proof heavily relies on the criterion for gapped
edge states. To classify the point defect, further braiding
statistics between different Lagrangian subgroups is dis-
cussed in [3]. The effect of gauging these defects is also
studied in [3].
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Appendix A: Fusion rule for Abelian and non-Abelian quasiparticles in topological state

The Abelian example is the Z2 toric code [6]. In the Z2 toric code, there are three kinds of nontrivial particles.
They are the electric particle (e), the magnetic particle (m) and the bound state of the electric and magnetic particles
(ϵ). The fusion rules are

e× e→ 1,m×m→ 1, e×m→ ϵ

ϵ× ϵ→ 1, e× ϵ→ m,m× ϵ→ e.
(A1)

The non-Abelian example is the Ising anyons. There are two kinds of nontrivial particles, σ and ψ. The fusion rules
are

σ × σ → 1 + ψ, σ × ψ → σ, ψ × ψ → 1. (A2)

Appendix B: Examples of ν = 8/9 and ν = 2/3

For ν = 8/9, the K matrix is

K =

[
1 0
0 −9

]
. (B1)

Let’s try to find the solution of Λ which satisfies ΛTKΛ = 0. Setting Λ = (a, b) gives a2 − 9b2 = 0. The solution is
Λ = (3, 1) or (3,−1). and these solutions are valid since all the entries are integer. How would the interaction term
look like? Let’s plug these two solutions into the Eq. (4),

Hint = cos(3ϕL ± 9ϕR) ≡ cos(ϕ′L ± ϕ′R). (B2)

The term with the positive sign corresponds to the charge conserving backscattering term such as Ψ†
LΨR + h.c.. For

the term with the negative sign, the interaction relates with the pairing in the superconductivity like Ψ†
LΨ

†
R + h.c..

Note that these two interactions both preserve the fermion parity.
For ν = 2/3, the K matrix is

K =

[
1 0
0 −3

]
. (B3)

One can show that the solution of Λ contains irrational number, which suggests the solution is not valid. Thus, the
condition is not satisfied in ν = 2/3.


