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We review the decorated domain wall construc-
tion that physically realize a variety of bosonic SPT
phases. This explicitly verifies the mathematical clas-
sification and low-energy physics which most earlier
studies are confined to. More recently, it has been
used to describe anomalous SPTs, phases that can
only be realized on the boundary of a higher dimen-
sional bulk.

1 Introduction

Symmetry protected topological phases are short-
ranged-entangled phases with a unique groud state,
but cannot be adiabatically connected to a trivial
ground state when the symmetry is enforced. The
non-trivial property can be detected when the system
has boudnary, where a symmetry-protected gapless
state will arise. Fermionic SPTs were discovered and
classified first, but later bosonic SPTs are studied,
aspects include mathematical classification through
group cohomology [1] and low energy physics.

To provide explicit physical systems that realize
those bosonic SPT phases, the decorated domain wall
construction was proposed [2], focusing on Z2 × G
SPT phases. Basically, higher dimensional SPTs are
constructed by attaching lower-dimensional SPTs on
the proliferated domain walls. It allows us to con-
struct and understand higher dimensional SPTs in
terms of lower dimensional ones, and provides con-
crete description of the edge dynamics.

This picture has been generalized to more compli-
cated cases, where one can construct D-dimensional
SPT phases that are anomalous, that is they only ap-
pear on the boundary of a D+1 bulk. Such cases can
be detected through consistency requirements among
those decorated domain walls are derived [3], and are
mathematically described by spectral sequences.

In the following, we present the basic idea of dec-
orating the domain walls in 2-d and 3-d, provide a
concrete physical model, and then use it to check the
edge dynamics, low-energy theory and group coho-
mology.

2 Construction of 2-d SPT
phases

The physical idea for 2-d SPT phase is shown in Fig.
1. Normally proliferating domain walls create a sym-

Figure 1: Decorating the domain walls with 1-d SPT
(Haldane chains).

metric ground state. However, by dressing these do-
main walls with Haldane chains, dangling spin 1/2
appear on the boundary, giving gapless edge states
characteristic of SPT.

A concrete physical model with Z2 × ZT2 symme-
try, where ZT2 represents time reversal symmetry, is
shown in Fig. 2. Each plaquette holds a Z2 vari-

Figure 2: 2-d SPT model with Z2 × ZT2 symmetry.

able (the black dot) that flips between |0〉 and |1〉
by Z2, and each vertex holds four spin 1/2 on which
ZT2 acts as T = iσyK. The Hamiltonian contains a
term V that effectively attaches a Haldane chain to
each domain walls, by enforcing the two spin-1/2 of
neighoring vertices on a Z2 domain wall to form a
singlet, as shown in Fig. 2(c). Finally we proliferate
the domain walls to form a unique ground state that
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observes the symmetry,

H =uV +
∑
i

τ ix , (1)

where τ ix acts on the Z2 variables.

This construction provides an explicit ground state
wave function, which provides an explicit construc-
tion of the edge state, as well as a derivation of the
effective field theory description and connection to
group cohomology.

2.1 Edge state and its effective theory

Fig. 3 shows the edge if the system has a boundary,

Figure 3: Edge state description.

where thick and thin lines represent Z2 variables |0〉
and |1〉. The solid dots are the dangling spin 1/2
resulting from the boundary cutting through the do-
main wall and exist only there, which transform pro-
jectively. To treat the edge as a spin chain, it’s eas-
ier to add dummy psuedospins (hollow dots in Fig.
3(b)), that transform differently under time reversal,
T = σxK, forming linear representation. After some
manipulation (see Appendix A), the Hamiltonian can
be reduced to the XY model,

He =
∑
i

τ ixσ
i+1
x + τ izσ

i+1
z + σixτ

i
x + σizτ

i
z . (2)

The low energy effective theory of the XY model is

2πLedge =∂tφ1∂xφ2 − v

[(
∂xφ1

2

)2

+ (∂xφ2)
2

]
,

(3)

and the domain wall creation operator can be shown
to be (see Appendix B)

D (x) =eiφ2/2 . (4)

and transforms as

D (x)
T 2

−−→−D (x) , (5)

so that the domain wall is indeed projective represen-
tation, as expected from an SPT phase.

2.2 Group cohomology

The boundary of an SPT phase can be classified by
group cohomology from how the symmetry acts on
it. This is well known, but the benefit of this con-
struction is that we can explicitly check it using the
degrees of freedom on the spin chain.

On the boundary, each of the degrees of freedom is
|αi〉, α a group element and i the index of the site.
The symmetry acts on the boundary as

O (α) =
∏
i

fα (αi, αi+1) |αα1, · · · , ααN 〉 , (6)

that is in addition to transforming αi → ααi at each
site, there’s a phase factor for each pair αi, αi+1 given
by the non-trivial 3rd cocyle ω3,

fα (αi, αi+1) =ω3

(
α−1i αi+1, α

−1
i+1α

−1, α
)
. (7)

In the case here, Z2 does not introduce any phase,
whereas ZT2 introduces a −1 factor if a domain wall
is present (that is, a solid dot in Fig. 3 is involved),
so

fα (αi, αi+1) =

{ (
−σi+1

z

) 1−τizτ
i+1
z

2 T is involved
1 T not involved

,

(8)

which can be reorganized into

ω3

(
α−1i αi+1, α

−1
i+1α

−1, α
)

=fα (αi, αi+1) , (9)

which can be checked to be a non-trivial third cocycle
of group Z2 × ZT2 .

3 Construction of 3d SPT
phase

For 3d SPT phase, we again present the basic idea
and then provide a concrete model. Consider the
symmetry group to be Z2 × Z̃2, where the tilde in
the second Z2 is there only for distinguish it from the
first one. This group has 4 elements

{1, g1, g2, g3} , (10)

and we consider domain walls of two of those (say g1
and g2), which are closed 2-manifolds. The two kinds
of manifolds may interset at a 1-d loop, as shown in
Fig. 4. The wave function is then defined as

ψ3d (C) = (−1)
N
g1g2
C , (11)

where Ng1g2
C is the number of such loops from in-

tersecting g1 and g2 domain walls. This amounts to

2



Figure 4: SPT in d = 3.

putting 2d SPTs on domain walls, since 2d SPTs are
characterized by

ψ2d (C) = (−1)
NC , (12)

where NC is the number of domain walls (now they
are 1-d domain walls for 2d SPTs).

The physical model is shown in Fig. 5, where the

Figure 5: SPT in d = 3, physical model.

black dots in the cubes are Z2 variable, vertices are
Z̃2 variables. Just like in the 2-d case, the vertex
configuration depends on the Z2 variables. We first
put +σx for every vertex. Then for vertices living on
Z2 domain walls, an extra factor

(−)
ndwp (13)

is given, where ndwp is the number of Z̃2 domain wall

pairs long the loop of all nearest neighbor Z̃2 spins on
the same Z2 domain wall as the original Z̃2 spin. This
operation effectively puts a Z̃2 SPTs on Z2 domain
walls.

Similar to 2-d cases, we can also explicitly check
the edge dynamics, low energy effective theory, and
the group cohomology classification.

4 Obstructions and Anomalous
SPTs

Recently, more elaborate domain wall decorations
have been investigated, which include junctions of do-
main walls [3], such as in Fig. 6. Each domain wall
segments and junctions are characterized by group

Figure 6: Domain wall obstructions.

cohomology, and consistency relations can be derived
that those domain walls must satisfy, otherwise they
cannot be realized in a strictly d-dimensional space
but must appear on the boundary of a higher dimen-
sional bulk.

5 Conclusions

We reviewed an explicit way to construct of 2d and
3d SPT wave functions, where concrete computation
can be made, such as the edge dynamics, low energy
effective theory, and group cohomology classification.
We also point to an interesting recent direction where
such construction provides a way to classify anoma-
lous SPTs that can only apppear on the boundary of
a higher-dimensional bulk.
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A The edge state Hamiltonian

To construct the Hamiltonian for the edge dynamics,
we first see how the symmetries act on the edge,

Z2 :
∏
i

τ ix

ZT2 :
∏
i,i+1

(
I + τ izτ

i+1
z

2
σi+1
x +

I− τ izτ i+1
z

2
iσi+1
y

)
,

(14)

since Z2 only acts on Z2 variables, while T is either
σx or iσy depending on whether its an actual dangling
spin 1/2 or a pseudospin. The Hamiltonian must pre-
serve the symmetry. Allowed terms are τ ix+σizτ

i
xσ

i+1
z

and σix + τ i−1z σixτ
i
z, so a possible Hamiltonian is

He =
∑
i

τ ix + σizτ
i
xσ

i+1
z + σix + τ i−1z σixτ

i
z , (15)

which reduces to the XY model after a unitary trans-
formation

U =

[∏
n

i
τnz + τnx√

2

]
·

[∏
n

(−1)
(1−τnz )(1−σnz )/4

]
.

(16)

B Domain wall creation opera-
tor for the effective theory

The low energy effective theory of the XY model is

2πLedge =∂tφ1∂xφ2 − v

[(
∂xφ1

2

)2

+ (∂xφ2)
2

]
,

(17)

with [
φ1 (x) ,

∂x′φ2 (x′)

2π

]
=iδ (x− x′) , (18)

and the symmetry acts on the field as

Z2 :φ1 → φ1 + π

φ2 → φ2

ZT2 :φ1 → −φ1
φ2 → φ2 + π . (19)

The operator that creates a domain wall should thus
rotate φ1 by π everywhere to the right of the domain
wall, and the one that does this is

D (x) =eiφ2/2 . (20)

To check whether it is a projective representation, we
see that

D (x)
T−→e−i(φ2+π)/2 = −iD∗ (x) , (21)

so that

D (x)
T 2

−−→−D (x) , (22)
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