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This note reviews the consequences of ’t Hooft anomaly and the anomaly matching in the con-
tinuous symmetry breaking phases. The anomaly in the ultraviolet theory is matched by Goldstone
bosons with Wess-Zumino-Witten term and other (anomalous) low energy degrees of freedom. The
anomaly matching in the discrete symmetry breaking phases leaves for future investigation.

INTRODUCTION

The ’t Hooft anomaly for global symmetry G of a quan-
tum field theory constrains the infrared phases to be

1. gapless with G symmetry

2. spontaneously symmetry breaking

3. topological order

but never a trivial gapped phase. The theory with
’t Hooft anomaly is dubbed as “anomalous theory T ”.
When evaluating the partition function of such theory
on a closed d-dimension manifold X, it yields an element
in 1-dimension Hilbert space but not a complex number,

ZT (X) ∈ H(X)∗, /∈ C. (0.1)

while nonanomalous theory on X takes value in C. In
other words, when performing a gauge transformation
on the background gauge field which is associated to the
global symmetry G, the partition function of the anoma-
lous theory on X becomes,

ZT [A+ δθA]→ ZT [A]eiS[θ,A]. (0.2)

Namely, the phase is not canonically determined, thus we
cannot regard it in C though it is 1-dimensional. On the
other hand, the partition function of an invertible field
theory I on d + 1-manifold Y with boundary ∂Y = X
yields a vector in H(X),

ZI(Y ) ∈ H(X). (0.3)

When gluing the anomalous theory T in d and the invert-
ible theory I in d+ 1, we can define a C-valued partition
function,

ZT (X) · ZI(Y ) ∈ H(X)∗ ⊗H(X) = C (0.4)

and the pictoral description is,

The ’t Hooft anomaly is a property of the Hilbert
space, therefore, it should be matched in the ultravio-
let and the infrared theory. From UV to IR, a common
scenario is the spontaneously symmetry breaking. Sup-
pose the UV theory TUV has the global symmetry G, and
it is spontaneously broken down to H in the IR, the IR
theory contains [the TIR with the unbroken H symmetry]
and [Goldstone bosons U lives in the coset G/H],

TUV d anomalous theory ∼ I in d+ 1
↓ spontaneously symmetry breaking,

TIR + U

The TIR together with U should match the anomaly in
TUV .

The chiral anomaly is an example that the local (per-
turbative) anomaly which can be seen from the trian-
gle diagram is known to be matched by the Goldstone
boson with Wess-Zumino-Witten term [1, 2]. However,
the global (non-perturbative) anomaly is more subtle and
need proper definition for the WZW term, .

GENERAL WZW TERMS AND THE ANOMALY
MATCHING

Assuming the d-dimensional UV theory has an
anomaly described by d + 1-dimension invertible theory
I, and the symmetry G is spontaneously broken to H in
the IR, Ref. [3] defines the general WZW term associated
to I so that the anomalies of UV and IR are matched.

The symmetry G could contain both the internal sym-
metry and the spacetime symmetry. When sponta-
neously breaking down to H, the Goldstone boson lives
in the coset G/H, and locally, the Goldstone boson takes
value in G and has a gauge symmetry Ĥ. The Ĥ can be
identical or cover of H. The Goldstone boson transforms
as,

Ĥ : U → Uĥ, G : U → g−1U (0.5)

where ĥ ∈ Ĥ, g ∈ G. Consider the connection A on the
principal G-bundle,

A→ g−1Ag + g−1dg, (0.6)

and define

AU = U−1AU + U−1dU (0.7)
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which transforms invariant under G, but under Ĥ,

AU → ĥ−1AU ĥ+ ĥ−1dĥ. (0.8)

Therefore, AU is the connection of the principal Ĥ-
bundle. We can decompose the gauge connection as,

AU = Ah
U + (AU −Ah

U ) ≡ Ah
U +Af

U (0.9)

where Ah
U is the connection of the principal Ĥ-bundle

and Af
U transforms homogeneously as Af

U → ĥ−1Af
U ĥ.

It makes mathematical sense to consider a one-parameter
family of gauge fields AtU ,

AtU = Ah
U + (1− t)Af

U =

{
AU t = 0

Ah
U t = 1

(0.10)

The WZW term is constructed as,

1. The background gauge field A is extended to
Y, ∂Y = X. Y may not exist.

2. Consider the manifold [0, 1]×X with interpolation
of the gauge field AtU , such that At=0

U = AU , A
t=1
U =

Ah
U . It can be shown that the construction does not

depend on the choice of interpolation.

3. Take Y0, ∂Y0 = X and extend Ah
U to gauge field of

Ĥ on Y0. Y0 may not exist.

4. Glue the three parts togother and form the closed
manifold

Ytotal = Y ∪ ([0, 1]×X) ∪ Ȳ0, (0.11)

and U is the transition function between Y and X,
A→ AU .

Therefore, the WZW term is defined as,

ΦWZW ≡ ZI(Ytotal) ∈ U(1) (0.12)

It is possible that the IR theory contains ’t Hooft
anomaly in H which is characterized by the invertible
theory with only Ĥ-bundle, the IR partition is defined
with the use of Y0,

ZIR ≡ ZTIR(X)ZI(Y0) ∈ C (0.13)

where ZTIR(X) ∈ H(X)∗ is the partition function of TIR
which is coupled to Ah

U .
The properties of the WZW term is

1. Although ΦWZW and ZIR may depend on Y0, their
product ΦWZWZIR is independent of the choice of
Y0. By definition, the partition function of Y0 is
cancelled when taking the product.

ΦWZWZIR
=ZI(Y ) · ZI([0, 1]×X) · ZI(Ȳ0)ZTIR(X)ZI(Y0)

=...|ZI(Y0)|2 = ...× 1

If IR theory is free from the anomaly, the WZW
term is independent of Y0.

2. Since U is only defined on X, the WZW term de-
pends only on d-dimensional configuration of U .

3. WZW term depends on Y and the background
gauge field A on it.

The last point coincides with the understanding of the
symmetry protected topological phases, the definition of
the WZW term depends on the manifold Y , but the de-
pendence is only through the background gauge fields
and this dependence is the anomaly of the corresponding
symmetries.

The local (perturbative) anomaly represented by
anomaly polynomial in 2 higher d+2 dimension can be re-
produced by usual WZW term in non-linear sigma model
[1, 4],

ΦWZW (U,A) = exp

(
2πi

∫
Y

Â(R)I(AU )

)
(0.14)

where Â(R) is the Dirac genus, R is the Riemann curva-
ture, and I(A) is defined as,

I(A) =

∫ 1

0

dt tr

(
i

2π
A exp

(
i

2π
(tdA+ t2A2)

))
,

(0.15)
and when the background gauge field is 0, the WZW term
reduces to the usual one [2],

ΦWZW (U,A) = exp

(
2πi

∫
Y

Â(R)I(U−1dU)

)
. (0.16)

The WZW term reproduces the anomaly polynomial
α(A) (omit gravitional part) by,

dΦWZW (U,A) = dCS(A) = α(A) (0.17)

However, the dependence on Y is more fundamental
when we consider global (non-perturbative) anoma-
lies.

TOPOLOGICAL θ ANGLE

The construction described in the previous section has
several topological issues.
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1. Whether the G-bundle can be reduced to Ĥ-bundle.
Claim: The partition function of the Goldstone bosons
will be zero or very small when G-bundle cannot reduced
to Ĥ-bundle.

Suppose in the UV U(Nf )L and U(Nf )R bundle are
topologically different. They are coupled to scalar Sij ,
then detS must vanish somewhere, otherwise S gives a
bundle isomorphism which contradicts with the two bun-
dles are different. The scalar S will spontaneously break
U(Nf )L × U(Nf )R → U(Nf )diag. Then the point S van-
ishes will have larger energy thus the partition function
will be small.

Those “topological solitons” in which some fields of
the UV theory (such as the S above) go outside the ef-
fective field theory of Goldstone bosons have interesting
anomalies.

2. Whether the G-bundle and Ĥ-bundle on X can
be extended to Y and Y0. The absence of such ex-
tension implies the possibility of topological θ-angle of
the groups. The general understanding coincides with
the classification of the symmetry protected topological
phases.

For the symmetry and structure we are interested in,
one can compute the bordism group ΩGd , which char-
acterizes the distinct d-manifold with symmetry G and
other structures that can be realized as the bound-
ary of d + 1-dimensional manifold. The bordism group
ΩGd = Z⊕ ...⊕Zn ⊕ ..., contains the free part (Z,R) and
the torsion part (Zn), the free parts correspond to var-
ious continuous θ-angles (instanton number), while the
discrete parts correspond to the discrete θ-angle (SU(2)
anomaly [5]).

3. The situation when Ĥ-bundle is nontrivial while G-
bundle is trivial. In other word, Y exists while Y0 does
not. One example is SO QCD4, where the global fermion
flavor symmetry SU(Nf ) acting on Nf Weyl fermions will
spontaneously breaks down to SO(Nf ) for some Nf and
Nc (the gauge color). The low enengy degrees of freedom
are Goldstone bosons in G/H. The torsion part of the
bordism group of the SO(Nf ) bundle is non-trivial and
corresponds to discrete θ-angle relevant to the sign of
ΦWZW . The generalized θ-angle of the Ĥ-bundle can be
regarded as a topological term of the Goldstone bosons.

FINAL REMARK

The previous understanding of Wess-Zumino-Witten
term is that the configuration of the Goldstone boson at
∞ should be the same, therefore, one can one-point com-
pactify the spacetime manifold, yields Sd → G/H, the
WZW term exists when πd+1(G/H) = Z, πd(G/H) =.

The understanding of the WZW term is updated by
the study of symmetry protected topological phases. The
WZW term can now be defined on more general mani-
fold and match subtler anomaly, interesting examples are

shown in Ref. [6–8].
I cannot resist to mention the 2+1d CP 1 model with

Hopf term. Based on the homotopy argument π3(CP 1) =
Z, the Hopf term seems to be Z-valued,

iθHopf[n], n ∈ CP 1 ∼= S2 (0.18)

however, the more sophisticated bordism group calcula-
tion shows [7, 8],

• U(1) factors in Hom(Ωspin3 (CP 1),U(1)) = 0 classi-
fies the ordinary theta angle,

• Ext(Ωspin3 (CP 1),Z) ∼= Tors(Ωspin3 (CP 1)) = Z2 clas-
sifies the discrete theta angles,

• Hom(Ωspin4 (CP 1),Z) ∼= Free(Ωspin4 (CP 1)) = Z clas-
sifies the Chern-Simons or Wess-Zumino terms.

The free part of Ωspin4 (CP 1) is the gravitational anomaly,
the Hopf term corresponds to the Torsion part of
Ωspin3 (CP 1) and that should be Z2-valued. Namely, only
θ = 0, π is consistent as local and unitary QFTs and
k = θ/π behaves as the level-k Chern-Simons theory.
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