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Weyl semimetals are gapless topological phase which have a chiral anomaly from gauging U(1)
charge conservation and translation symmetry. The gap opening is forbidden as long as we preserve
the anomalies and symmetries. The system also has boundary fermi arc states and a quantized
hall response for a Weyl fermion coupled to an external background. The magnitude of the Hall
response is proportional to the position of the Weyl nodes. In this note we ask if it is possible to
open a gap in the magnetic Weyl semimetal by adding strong interactions without breaking any of
the symmetries, charge conservation and translation, and also preserving the quantized non-trivial
topological responses following [1]. We learn that only when the location of the nodes is fine tuned
can we open the gap while not breaking any of our demands. We also learn there exists an insulating
fractional hall state in three dimensions that is not simply a coupled stack of two dimensional integer
quantum hall states.

INTRODUCTION

We have spent this quarter studying topological in-
sulators which have gapless edge modes, which cancel
anomalies in the bulk. But what about gaplessness in the
bulk. Spontaneously breaking a symmetry would lead to
Goldstone modes. Suppose we assume that we do not
want to break any symmetries. For odd filling fraction
the bulk will be a metal. By adding strong Coulomb in-
teractions the gap can be opened by forming a Mott in-
sulator. When there are even electrons per unit cell the
bulk can be gapless if there is an accidental band cross-
ing with non-zero Chern number associated with it. The
hamiltonian at the degeneracy is described by a massless
Weyl fermion. By Nielsen-Ninomiya these Weyl fermions
must always appear with opposite chiralities. We ask
the following question - Is there a way to gap out the
Weyl fermions in the bulk by adding interactions with-
out breaking U(1) and translational symmetry ?

CHIRAL ANOMALY

Suppose we have a magnetic Weyl semimetal with two
nodes, located at k = ±Qz.

The gauging obstructions are associated with symme-
tries U(1) and translation in ẑ (call this group Zz and
generator Tz).

The usual way to see the anomaly is gauging U(1)×Zz
by adding gauge fields Aµ and z ∈ H1(M4,Z). We also
couple the theory to a background metric to probe the
thermal hall response. The chiral anomaly can be under-
stood of the 4d bulk can be understood as a boundary
term of a 5d bulk action given by SCA = i2Q
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where R is Riemann curvature.
The periodicity of the term in the parenthesis is similar to
the periodicity of the Θ−angle for charged 4d fermions.
Thus the coefficient 2Q takes continuous value in (0, 2π).
Note that 2Q is not quantized and this is because we can
always bring the two Weyl nodes together and get rid of
them. Thus, another important assumption we make is
that 2Q is fixed and we demand our interactions to be
below the electron band-width.

Another way to see the chiral anomaly is to calcu-
late the polarization associated with the extra Luttinger
volume[2, 3] from the Weyl fermions, i.e., the hall con-
ductivity is given by the Streda formula σxy =
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2π . Tuning this separation 2Q between 0

and 2πZ gives us a transition between a trivial insulator
and an integer quantum hall state via a Weyl semimetal.

GAPPING A 2D DIRAC FERMION

Another place where we can see a plateau transition in
conductivity is by tuning the mass of a 2D Dirac fermion,
σxy jumps from 0 to e2/h with σxy = e2/2h at m = 0.
Let us first try to open the gap at this Dirac point while
preserving the parity anomaly. Let us open a gap first by
adding an s-wave pairing. We know from notes that the
vortex solution for the Dirac equation carries a Majorana
mode Φ = hc/2e = π in its core and we can condense
pairs of Majorana modes. But, recall that because of
the parity anomaly, L = 1

2σxya ∧ ∂a a 2π vortex carries
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a charge e/2, and are mutual semions, which means we
cannot condense them. Thus the smallest such vortex
that can be condensed is a 4π vortex. Condensing this
vortex fractionalizes the charge into spin degrees of free-
dom and charge degrees of freedom, and we can write the
fermion c = b2f where b is a charge-1/2 boson and f is
the spin degree of freedom. f describes the massive Dirac
fermion which (half-)quantizes the thermal hall conduc-
tivity, while b forms a bosonic integer quantum hall state
which (half-)quantizes the electrical hall conductivity.

GAPPING THE 3D WEYL FERMION

Now, let’s ask the same question for the Weyl fermions,
can we gap them while preserving the chiral anomalies,
i.e. the half-quantized electrical and thermal hall re-
sponses.

The first step is to add a superconducting pair-
ing between the chiral fermions. BCS pairing ∝
ψk,Riσ

yψ−k,L + h.c does not open a gap due to particle-
hole symmetry. A CDW pairing, ∝ ψk,↑ψ−k,↓ + h.c
opens a gap but breaks translational symmetry because

the condensate ∆(Q) ∝
〈
ψ†−Qψ

†
Q

〉
carries momentum

2Q. To preserve gauge invariance under chiral rota-
tions, T †z c

†
±QTz = e∓iQc†±Q, we should condense %(Q) =

∆(Q)∆∗(−Q) which carries momentum 4Q. In general,
this breaks translational symmetry except if Q = G/4,
where G is the smallest nonzero reciprocal lattice vector.

The next step is to condense the vortices. Once again,
there are chiral Majorana modes each carrying flux Φ = π
in the vortex cores, and for an even number 2n of such
Majorana’s can be paired upto into a n 1D Weyl Fermions
and gapped about by adding a BCS pairing. For such a
case when the vortex can be gapped without breaking
translational symmetry we want to make sure we match
the chiral anomaly σxy = 1/4π when we condense vor-
tices, which are loops in 3D. We would like the loops
to be trivial under translation. One way to understand
the loops under translation, we link the loop to a lattice
dislocation along some Burger vector, say along ẑ which
inserts a half-xy plane at the dislocation line. The braid
statistics of two such loops for even Majorana modes
per layer, each carrying a 2π flux will have statistics,
θ = πσxy/(1/2π) = π/2. Each time a loop links a dis-
location it traps a semion, and thus the 3-loop braiding
process describing the braiding of the two-vortex loops is
semionic. This means that condensing pairs of Majoranas
is not allowed. Once again we come to the conclusion that
we can only condense the vortices in a four-fold manner.
The insulator produced by such a condensation preserves
the translation symmetries and has U(1) charge conserva-
tion. It has an electrical hall conductivity of σxy = 1/4π

and thermal hall conductivity κxy = σxy

(
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.

Once again, by spin charge separation we can write a

parton ansatz for the fermion c = b2f , where b, f are
the chargon and spinon degrees of freedom respectively,
invariant under a Z4 gauge transformation, b → (i)nb,
f → (−1)nf , n ∈ Z4. The insulator has Z4 topolog-
ical order and the Z4 gauge flux loops are the uncon-
densed one, two and three fold vortices. This state is the
analogue of the Moore-Read Pfaffian-antisemion state in
three dimensions.

The fermion f is described by a band structure of the
Weyl semimetal with 2Q = π and the CDW pairing term,
that does not violate the translational symmetry. The
boundary Fermi arc states lead to a half-quantized ther-
mal hall conductivity. The e/2−charged bosons b form
a layered bosonic integer quantum hall state, with half-
quantized electrical hall conductivity per layer. The in-
sulating phase produced has the right chiral and gravi-
tational anomalies while preserving gauge invariance and
translation.

The above state is also a way to realize the fractional
quantum hall effect in 3D, which provides a intermediate
phase between a trivial insulator with σxy = 0 and an
integer quantum hall insulator with σxy = 1/2π. Simi-
lar to the 2D Dirac fermion we can tune between the two
phases by tuning a TR-breaking parameter, say the mag-
netization m. This is also like tuning the filling fraction
by applying an external magnetic field in the case of 2D
quantum hall state.

CONCLUSION

In conclusion, in this note we found a way to open a
gap in a magnetic Weyl semimetal while preserving the
electrical and thermal hall responses proportional to the
Weyl node separation 2Q. When 2Q 6= Zπ the anoma-
lies prohibit opening a gap. We have demonstrated that
such gap opening is possible, but only when the 2Q = π,
and at the cost of introducing a non-trivial topological
order Z4 which can be understood as a generalization of
Fractional Quantum Hall insulator in three dimensions.
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