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This paper is a simple introduction to topological non-linear σ-model, which can be used to de-
scribe bosonic topological ordered phases. We will first introduce the construction of the topological
non-linear σ-model, then we will present the 1-gauge theory as an example of σ-model. Finally,
as an application, we will use this formalism to describe gravitational anomaly in 2 + 1D bosonic
topological order.

I. INTRODUCTION

Topological ordered phase is an active aspect of re-
search of topological phases of matter. It’s very intrigu-
ing to find a universal topological invariant quantity that
can characterize topological ordered phases. For bosonic
topological orders, it was proposed that such a topolog-
ical character might be topological partition function of
non-linear σ-model.

In this paper, we will briefly introduce non-linear σ-
model in topological partition function formalism, and
then present 1-gauge theory as an example. Finally we
will discuss the perturbative gravitational anomaly in
terms of the topological partition function formalism.

II. TOPOLOGICAL NON-LINEAR σ-MODEL

Consider a bosonic system defined in D = d+ 1 space-
time manifld MD, which is described by the partition
function in terms of non-linear σ-model:

Z =

∫
Dφ(x)e

−
∫
MD
L
, (1)

where L = L(φ, ∂φ) and φ is the map from spacetime
manifold to target space: φ : MD → K. The topological
partition function can be constructed by factoring out
the volume term, which isn’t topological1,2:

Z = e−
∫
ε · Ztop, (2)

where ε(x) is the energy density.
There is still another important ingredient in the def-

inition of the partition function that need to be de-
fined carefully, namely, the measure

∫
Dφ, which, roughly

speaking, can be understood as
∑
φ(x). In order to define

it formally, we need to first decompose the Md+1 space-
time manifold to a set of n−simplex Mn ⊂ MD, n =
0, 1, 2, · · · , together with the face map di ⊂ D, which
describes how the n− 1-simplices form the n-simplex:

(MD,DM ) : M0
d0,d1←−−−M1

d0,d1,d2←−−−−− · · · d0,d1,··· ,dD←−−−−−−−MD

(3)
We can do the similar thing for the target space K →
(K,DK). Then φ is now φ : MD → K is a set of maps
φ0 : M0 → K0, φ1 : M1 → K1, · · · , that also preserve the
corresponding face maps. Therefore φ can be considered

as a set of homomorphism φ : (MD,DM ) → (K,DK).
Then integration measure

∫
Dφ(x) can be understand as

summation over the set of homomorphism∫
Dφ(x) =

∑
φ

. (4)

To be more precise, denote the simplex in K as
vi, lij , tijk, · · · for points, links, triangles, etc. Then

φ0 : i ∈→ vi, φ1 : (ij)→ lij , φ2 : (ijk)→ tijk, · · · , (5)

where i ∈M0, (ij) ∈M1, (ijk) ∈M2, · · · . Therefore, the
measure can be written out explicitly∫

Dφ =
∑
φ

=
∑

vi,lij ,tijk,···

. (6)

Finally, the partition function Eq.(1) is formally defined.
With the formally defined partition function, we can

define the non-linear σ-model as

Z(MD;K, ω̃D) =
∑
φ

e2πi
∫
φ∗ω̃D , (7)

where ω̃D is a real-valued D-cochain in K, and φ∗ is the
pull-back, then φ∗ω̃D = ωD is a real-valued D-cochain
on MD.

A comment: Actually, different triangulations T of
MD might give different phases. Therefore, we need to
choose a special (ω̄D, K̄), such that different T will give
the same phases under the fine triangulation limit. How-
ever, it still might be problematic, as we will discuss in
section IV.

III. 1-GAUGE THEORY

In this section, we will introduce an example of
topological non-linear σ-model, namely, 1-gauge theory
(Dijkgraaf-Witten gauge theory).

Consider a non-linear σmodel of G with target space
K, that satisfies π1(K) = G, πk>1(K) = 0. This is a
1-gauge theory. Denote K(G) = BG, as a simplical set.
In order to define a topological partition function, we
need to first triangulate BG → BG. In this case, we
can choose (BG)0 = {p0}, where p0 is the base point in
BG. Then the links are loops through p0, and aij =



2

g ∈ G = π1(BG) = (BG)1. The higher set of simplices
are (BG)n = Gn. Finally, we can obtain the partition
function

Z =
∑
φ

[
d+1∏
n=0

(ωn)Nn

]
ei2π

∫
φ∗ω̄D , (8)

where Nn is the number of simplices in MD, and ω̄D ∈
HD(BG;R/Z) is the cocycle in BG.

Notice that exponent is invariant under re-
triangulation, but the ”measure”

∑
φ

d+1∏
n=0

(ωn)Nn (9)

doesn’t. We need to do something similar to ”gauge
fixing”. The ”gauge symmetry” here refers to the in-
variance under a homomorphism Φ : I × MD → BG,
φ1 = Φ(t1, ·), φ2 = Φ(t2, ·):

e2πi
∫
φ∗
1 ω̄D = e2πi

∫
φ∗
2 ω̄D , ∂MD = 0. (10)

Such a gauge symmetry means the exponent only de-
pends on homotopic class [φ]. After some manipulation,
we can re-write the partition function in terms of the
homotopic class

Z =
∑
[φ]

[
d+1∏
n=0

(ωn)Nn

]
N([φ] ,MD,BG)ei2π

∫
φ∗ω̄D

=
∑
[φ]

W ([φ,MD,BG])ei2π
∫
φ∗ω̄D ,

(11)

where N([φ] ,MD,BG) is the number of homomorphism
φ :MD → BG in the homotopic class [φ]. This partition
function is invariant under the re-triangulation.

In the end, we obtain a non-linear σ-model, which is
classified by ωD ∈ HD(BG,R/Z). If ωD is trivial, then
it corresponds to a G-gauge theory, if not, then it gives
a Dijkgraaf-Witten gauge theory.

IV. ANOMALIES IN TOPOLOGICAL ORDER

n the previous section, we only consider the closed
spacetime manifold. If the MD is not closed, then the
topological order system might have anomaly in the
boundary. The topological partition function enables us
to study such anomalies in topological order.

A. Analogy in Symmetry Protected Topological
Phases

Actually there are lots of similar things in SPT phase.
Before we consider topological order, we can first briefly
review the anomaly in SPT in terms of non-linear σ-
model. A SPT state in D = d+ 1 dimensional spacetime

MD bulk manifold also has a non-linear σ-model descrip-
tion with target space G3

S =

∫
MD

[
∂g

λ
+ iW (g)

]
, g ∈ G. (12)

This defines a lattice theory and W is the topological
term which corresponds to the elements in HD(G,R/Z)
for bosonic SPT.

We can try to gauge the theory by integrating out g(x):

S =

∫ [
tr(F 2)

λ
+ iW̃ (A)

]
, (13)

where W̃ (g−1dg) = W (g) ∈ HD(G,R/Z).
Then we can consider the θ term

θ[g] =

∫
W̃ (g−1dg), (14)

which may not be 0 mod 2π if ∂MD 6= 0, which indicates
anomaly in the boundary.

B. Gravitational Anomalies in Topological Order

Now back to topological order. Under the triangula-
tion limit, the triangulation dependence of the topologi-
cal partition function will turn into metric dependence:

Z(MD, T )→ Z(MD, gµν). (15)

If the manifold has boundary ∂MD 6= 0, then under the
diffeomorphism of gµν , the topological partition function
might not be invariant but gain an extra phase2

A = ei2π
∮
I
α = e

i2π
∮
I×MD

Ω
, (16)

where I is a segment in the moduli space MMD
=

{gµν}/Diff, and α is a 1-form onMMD
and Ω is a closed

D + 1 form constructed from the curvature on MD × I.
For example, consider D = 2+1 topological order with

boundary, Ω = c−
24 p1, where p1 is the first Pontryagin

class, the topological partition function is

Ztop = e
i2π

c−
24

∮
MD

ω3 , dω3 = p1, (17)

which corresponds to gravitational Chern-Simons term,
and c− is the chiral central charge, which indicates the
perturbative gravitational anomaly2,4.

V. SUMMARY

In this paper, we first carefully define the topological
partition function. In order to make it well-defined, we
need to carefully construct the definition of the measure,
and also do ”gauge fixing” to make it triangulation (met-
ric) independent. We present the 1-gauge theory as an
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example of construction of a non-linear σ-model. In addi-
tion, if the spacetime manifold has boundary, usually the
metric dependence of the topological partition function
cannot be fully cancelled, then we obtain perturbative
gravitational anomaly, which can be used to characterize

the bulk topological order.
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