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In this brief term paper, following [6], I will discuss the interplay of conventional Lieb-Schultz-
Mattis (LSM) theorem and bosonic symmetry protected topological (SPT) phases. The original
LSM theorem prevents the ground state (GS) of a system from being boring. It will be shown that,
with further crystalline symmetries and constraints on local Hilbert space, another interestingness
appears in the generalized LSM theorem. To be precise, the GS in this case is guaranteed to be in
a non-trivial SPT phase, which would be forbidden by the original LSM theorem.

INTRODUCTION

Since the discovery of free fermion topological insu-
lators [3, 10], symmetry protected topological (SPT)
phases in general have been extensively studied. An
important question in this field is to classify all possi-
ble SPT phases based on symmetries and dimensional-
ity. Tremendous progress has been made in classifying
free fermion SPTs [11], but the problem becomes more
subtle when interactions are introduced [8, 14]. Different
from fermionic SPTs, bosonic SPTs require interactions
to stabilize, with famous examples being the spin-1 Hal-
dane chain [2] and the bosonic integer quantum Hall in-
sulator [12]. Group cohomology has been very succussful
in classifying bosonic SPTs [1]. However, there does ex-
ist bosonic SPTs that are beyond the group cohomology
classification [15]. We will see another such phase in this
paper.

Another powerful results in many-body physics, but
seemingly irrelevant to SPTs, is the Lieb-Schultz-Mattis
(LSM) theorem [4, 7, 9], which says a translation sym-
metric system with half integer spins per unit cell can-
not be trivially gapped, i.e. the ground state (GS) is
either gapless, or topologically ordered, or there must be
spontaneous symmetry breaking. In another words, LSM
theorem forbids SPT phases. However, as we will see in
the following discussions, by adding restrictions on the
symmetry action on the local Hilbert space, projective
representations to be precise, then the resulting phase
has to be a non-trivial SPT.

A 1D EXAMPLE OF SPT-LSM SYSTEMS

Symmetries and local Hilbert spaces

Consider a 1D chain, where the local Hilbert space on
each site is given by |α, β〉, with α, β = 0, 1, 2, 3, i.e. the
local Hilbert space dimension is 16. The on-site symme-
try of this system is taken to be Zg4 × Zh4 , where g, h la-
bel the generators. The schematic diagram of the chain
is shown in Fig 1. Notice that each site contains two
“spins” and each unit cell contains two sites. Therefore,
the translation symmetry is given by T2x. Also, there

FIG. 1: Schematic diagram for the 1D chain. Each site contains
two “spins” and each unit cell consists of two sites.

is a mirror symmetry σ along each site center, which
will turn out to be crucial in obtaining the SPT-LSM
system. A crucial point is that we require the state
on each site to facilitate a projective representation of
the symmetry group Zg4 × Zh4 . The projective represen-
tations are classified by the second cohomology group
H2[Zg4 × Zh4 , U(1)] = Z4. To be precise, using Wg,h as
representations, we have

W 4
g = W 4

h = 1,WgWh = iηWhWg, (0.1)

with η = 0, 1, 2, 3. For our purposes we take η = 2, as a
result of which, the symmetry still acts linearly on each
unit cell (consisting of two sites). More concretely, by
introducing the 4× 4 matrices µ, ν acting as

µz|α, β〉 = iα|α, β〉, µx|α, β〉 = |α+ 1, β〉;
νz|α, β〉 = iβ |α, β〉, νx|α, β〉 = |α, β + 1〉,

(0.2)

the Wg,h can be written as

Wg(j) = µxj ⊗ νxj ;

Wh(j) =

{
µzj ⊗ νzj , j even

(µzj )
3 ⊗ (νzj )3, j odd

(0.3)

which satisfy the relations in Eq. 0.1 for η = 2 as desired.

An exactly solvable model Hamiltonian

Based on the above definitions, we can write down an
AKLT style Hamiltonian that is exactly solvable:

H =
∑
j

(1− P xj+1/2P
z
j+1/2), (0.4)
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where

P xj+1/2 =
1

4
(1 + νxj µ

x
j+1 + (νxj µ

x
j+1)2 + (νxj µ

x
j+1)3),

P zj+1/2 =
1

4
(1 + νzj (µzj+1)3 + (νzj µ

z
j+1)2 + (νzj )3µzj+1).

(0.5)

It can be easily shown that the unique zero energy GS is
given by

|Ψ〉 = ⊗j

[
3∑
a=0

|νzj = a, µzj+1 = a〉

]
. (0.6)

For an open chain, the symmetry Zg4×Zh4 acts on the two
edges as WL

g,h = µx,z,WR
g,h = νx,z, which corresponds to

η = −1.

Comparison with group cohomology classification

Based on the “crystalline equivalence principle” eluci-
dated in [13], the 1D bosonic SPT phases are classified
by the second group cohomology

H2[Zg4 × Zh4 × Zσ2 , U(1)σ] = Z2 × Z2, (0.7)

where Zσ2 is the mirror reflection and U(1)σ means the
reflection acts non-trivially on the U(1) phase. Here the
translation symmetry T2x is not included because it’s not
essential for the non-triviality of the SPT phase. There
are two root SPT phases based on this classification. The
first one is the Haldane phase protected by σ, the other is
the SPT phase protected by Zg4 ×Zh4 with η = 2. Notice
that here the η = 2 projective representation is about
the edge states of the SPT. However, in our model, the
edge states have η = ±1 even though each bulk site has
η = 2. Therefore, the non-trivial SPT phase obtained
before goes beyond the group cohomology classification.

SPT PHASES FROM DOMAIN WALL
CONDENSATION

Domain wall condensation, or more generally defect
condensation, can be used to construct possible SPT
phases. The important thing here is that all symmetries
have to be preserved when the defects are condensed.
The defect operator in our 1D model can be constructed
through a Z4 version of Kramers-Wannier duality for the
Zg4 part of the symmetry by defining

τxj+1/2 = (µzj )
†µzj+1, τ

z
j+1/2 =

∏
j′<j

µxj′ν
x
j′ , (0.8)

where τzj+1/2 is the g domain wall creation operator.
With η = 2 in Eq. 0.1, we can work out the symmetry

actions on the domain wall:

g : τzj+1/2 → τzj+1/2,

h : τzj+1/2 → (−1)jτzj+1/2,

σ : τzj+1/2 → (τz−j−1/2)†,

T2x : τzj+1/2 → τzj+5/2.

(0.9)

From these symmetry actions, we immediately obtain the
following relation

hσ ◦ τz = −σh ◦ τz, (0.10)

which says the condensation of τz cannot preserve Zh4 and
σ at the same time, i.e. by condensing the domain wall
alone we are not able to obtain a symmetric phase. The
trick here is to condense the bound state of the g domain
wall and the h-charge µx, νx. Defining this bound state
as τ̃z2j−1/2 ≡ τz2j−1/2(νx2j)

†, we can have a similar set of
symmetry transformation rules. It can be shown that
[h, σ] ◦ τ̃z = 0, which implies that the condensation of τ̃z

preserves all the symmetries.

REAL-SPACE CONSTRUCTION: DECORATIONS

Decoration can be thought of as a generalization of
layered constructions of SPTs [5]. More precisely, given
a lattice of certain dimension, we can put certain SPTs
on smaller regions (of varies dimensions) of the lattice in
order for the whole system to be some specific SPT phase.
Here we use this real-space construction to reproduce the
1D SPT phase discussed above.

Let’s start with the bond [0, 1], connecting site 0 and
site 1, represented by the wiggly line shown in Fig 1. It’s
easy to see that the bond has global symmetry Zg4 ×Zh4 ,
hence the possible SPT phases that can be decorated on
the bond are classified by η[0,1] = H2[Zg4 × Zh4 , U(1)] =
Z4. Notice again that this η[0,1] here characterizes the
edge, or the “spin” at the two ends of the bond, in this
case. If the left edge has η[0,1], then the right edge has
−η[0,1], giving a total of 0 for the whole bond. Then
by translation and mirror reflection, we can obtain the
decorations on all the other bonds. Based on the non-
trivial action of σ, we have

η[−1,0] = σ ◦ η[0,1] = −η[0,1] mod 4

η0 = −η[−1,0] + η[0,1] = 2η[0,1] mod 4,
(0.11)

where the second relation is true because the site 0 con-
sists of the right edge of [−1, 0] and the left edge of [0, 1].
Recall that we have chosen η0 = 2 for our model, there-
fore η[0,1] = ±1, which specifies the SPT that should be
decorated on the bond.

The punchline is, given the global symmetry and lat-
tice structure, we can decorate the lattice by appropri-
ately chosen SPTs to construct the desired phase.



3

CONCLUSION AND REMARK ON HIGHER
DIMENSIONS

In this paper we have discussed a generalized LSM the-
orem related to bosonic SPTs using a simple 1D model.
The SPT-LSM systems can be constructed in real space
through decoration or through condensation of symme-
try defects. The approaches used in dealing with the 1D
case are completely general and can be applied to arbi-
trary dimensions.
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