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INTRODUCTION

We first briefly review some basic facts about non-
abelian statistics and show that it share some common
feature with rational conformal field theory. Then we
will use fractional quantum hall system as an example
to show the relation between nonabelian statistics and
conformal field theory.

NON-ABELIAN STATISTICS

The notion of particle statistics in quantum mechanics
usually refers to the action of permutation group Sn on
the wavefunction for a collection of n identical indistin-
guishable particles: the wavefunction is taken to transfor-
m as a definite representation of this group. The usual
examples are Bose and Fermi statistics. A more mod-
ern approach prefers to exchange particles along some
definite paths in space and omits intersecting exchange
paths. It turns out that for spatial dimension d > 2 that
the group of exchanges still reduces to Sn and for d=2
the topologically distinct exchanges is the braid group
Bn.

Braid group Bn is known to have nonabelian represen-
tations. This implies that even when the positions and
quantum numbers have been specified, the wavefunction
is not unique but is a member of a vector space. It has
been analized in[1] that in order for nonabelian statistics
to be consistent with locality we need to introduce the
notion of fusion. Fusion of two or more particles into a
composite produces either annihilation of the particle or
else a particle of some new type with its own statistics
properties. The matrix elements for these processes de-
noted F, describe the fusion rules and will have to satisfy
consistent relations involving B’s. For example, taking
a third particle around a pair before or after they fuse
should give the same result, since the third particle is far
from the fusing pair and so cannot distinguish the close
pair from their composite. There are known action that
can produce the nonabelian properties. These are the
Chern-Simons terms for nonabelian gauge fields.

SOME FACTS ABOUT CFT

Exactly at the critical point the correlation function of
a collection of fields φir (xr) can be split in the form

< Πn
r=1φir (xr) >=

∑
p

|Fp;i1...in(z1, ...zn)|2 (1)

We have assumed that the spectrum is diagonal which is
equivalent to assuming that the operators do not carry
spin. To further simplify the problem we can focus on a
subset called rational CFT and the sum over p is finite
in this case. As the z’s are varied so as to exchange some
φ′is the function Fp are analytically continued to different
sheets but can be expressed as z independent linear com-
binations of the original functions through some braiding
matrices B.[1] In this way the correlation function can be
single valued.

Another operation that can be performed on the cor-
relation functions is the operator product expansion. As
the arguments z1, z2 of two fields approach one another,
the operators merge into a linear combinations of single
operators:

φi(z)φj(w) ∼ Ckij(z − w)φk(w) (2)

as z → w, where φk is some new field of type k and Ckij
is a singular coefficient function. This operation can be
used to define some new matrices F, the fusion matrix
that describes which fields k appear in the product of
i and j. In[2] the consistency conditions that must be
satisfied were analyzed. In fact these are also the con-
sistent conditions for nonablian statistics. This indicate
that there might be close relations between systems with
nonabelian excitations and CFT. In the next section we
will use fractional quantum hall system as an example.

EXAMPLE: FRACTIONAL QUANTUM HALL
SYSTEM

The fractional quantum hall system is an example of
bulk-boundary correspondence. The edge modes on the
boundary can be described by a conformal field theory.
The wavefunction in the bulk can be constructed as cor-
relation functions on the boundary.

Let’s consider a fractional quantum hall system on a
disc. Then the edge modes live on the cylinder with
coordinate (σ, t).

S =
m

4π

∫
R×S1

dtdσ∂tφ∂σφ− (∂σφ)2 (3)
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We can Wick rotate to Euclidean space and define the
complex variable

w =
2π

L
σ + it (4)

The next step is to map the cylinder to the plane by
working with the single-valued complex coordinates

z = e−iw (5)

The chiral boson living on the boundary can be described
by a holomorphic operator with propagator

< φ(z)φ(w) = − 1

m
log(z − w) > (6)

The basic idea is to look at correlation functions involving
insertions of electrons of the form

ψ =: eimφ :

Now consider the correlation function

G(zi, z̄i) =< ψ(z1)...ψ(zN )exp(−ρ
∫
γ

d2z
′
φ(z

′
)) > (7)

whereρ0 = 1/2πl2B and γ is a disc-shaped region of radius
R, large enough to encompass all point zi. The correla-
tion function is nonzero only if

mN = ρ0

∫
γ

d2z
′

= πR2ρ0

Using ρ0=1/πl2B , we can see that we should take

R=
√

2mNlB which is just the radius of the droplet de-
scribed by the quantum hall wavefunction. Using (6) and
Wick theorem, correlation function (7) can be written as

G(zi, z̄i) ∼
∏
i<j

(zi − zj)mexp(−ρ0
N∑
i=1

∫
γ

d2z
′
log(zi − z

′
))

(8)

The imaginary part of the integral is ill-defined because
of the branch cut in the logarithm. However it can be
undone by a singular gauge transformation. Omitting
overall constant and terms that are suppressed by |zi|/R.
the final result for the correlation function is

G(zi, z̄i) ∼
∏
i<j

(zi − zj)me−
∑

i |zi|
2/4l2B

(9)

This is the well-known Laughlin wavefunction.
We can extend this to wavefunction that involve quasi-

holes. We can insert some number of quai-hole operators

ψqh =: eiφ :

into the correlation function

G̃(zi, z̄i; ηa, η̄a)

=< ψqh(η1)...ψqh(ηp)ψ(z1)...ψ(zN )exp(−ρ
∫
γ

d2z
′
φ(z

′
)) >

=
∏
a<b

(ηa − η1/m)

∏
a,i

(zi − ηa)
∏
k<l

(zk − zl)m

e−
∑

i |zi|
2/4l2B−

∑
a |ηa|

2/4ml2B

(10)

This is the laughlin wavefunction for the quasi-hole ex-
citations. This bulk-boundary correspondence is remi-
niscent of what happens in dS/CFT correspondence. In
spacetimes which areasymptotically de Sitter, the bulk
Hartle-Hawking wavefunction at spacelike infinity is cap-
tured by a boundary Euclidean conformal field theory.

CONCLUSION

It is conjectured that this correspondence between bulk
wavefunction and boundary correlation functions extend
to all quantum hall states. This means we don’t need to
guess quantum hall wavefunctions anymore. Instead we
just guess a boundary CFT and compute its correlation
functions. And it turns out that the CFT framework is
most useful for studying the properties of quantum hall
states, especially those with nonabelian anyons. Also the
braiding properties of anyons are related to well-studied
properties of CFTs.
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[1] The braiding matrices can be understood from another
point of view. Correlation functions in rational CFT obeys
BPZ equations. For 4-point functions these become 2nd
order ODEs with isolated singularities on the complex
plane. As z goes around these singularities the solution-
s will transform into each other. The coefficient will be
given by the B matrices mentioned above.


