University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022
 Assignment 3 - Solutions

Due 11:59pm Monday, April 18, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Right-handed neutrinos.

[from Iain Stewart, and hep-ph/0210271]
Consider adding a right-handed singlet (under all gauge groups) neutrino N_{R} to the Standard Model. It may have a majorana mass M; and it may have a coupling g_{ν} to leptons, so that all the dimension ≤ 4 operators are

$$
\mathcal{L}_{N}=\bar{N}_{R} \mathbf{i} \not \partial N_{R}-\frac{M}{2} \bar{N}_{R}^{c} N_{R}-\frac{M}{2} \bar{N}_{R} N_{R}^{c}+\left(g_{\nu} \bar{N}_{R} H_{i}^{T} L_{j} \epsilon^{i j}+h . c .\right)
$$

where $N_{R}^{c}=C\left(\bar{N}_{R}\right)^{T}$ is the the charge conjugate field, $C=\mathbf{i} \gamma_{2} \gamma_{0}$ (in the Dirac representation), H is the Higgs doublet, L is the left-handed lepton doublet, containing ν_{L} and e_{L}. Take the mass M to be large compared to the electroweak scale. Integrate out the right-handed neutrinos at tree level. [Hint: you may find it useful to work in terms of the Majorana field

$$
N \equiv N_{R}+N_{R}^{c}
$$

which satisfies $N=N^{c}$.]
Show that the leading term in the expansion in $1 / M$ is a dimension- 5 operator made of Standard Model fields. Explain the consequences of this operator for neutrino physics, assuming a vacuum expectation value for the Higgs field.

In terms of N, the lagrangian is

$$
\mathcal{L}_{N}=\frac{1}{2} \bar{N}(\mathbf{i} \not \partial-M) N+g_{\nu} \bar{N} H_{i} L_{j} \epsilon^{i j}+g_{\nu} \bar{N} H_{i}^{\star} L_{j}^{c} \epsilon^{i j} .
$$

The equation of motion for N (from varying \bar{N}) is

$$
(\mathbf{i} \not \partial-M) N=-g_{\nu}\left(H_{i} L_{j}+H_{i}^{\star} L_{j}^{c}\right) \epsilon^{i j}
$$

which gives

$$
\mathcal{L}_{N} \left\lvert\,=-\frac{1}{2} g_{\nu}\left(\bar{L}_{j}^{c} H_{i}+\bar{L}_{j} H_{i}^{\star}\right) \epsilon^{i j} \frac{1}{\mathbf{i} \not \partial-M} g_{\nu}\left(H_{k} L_{\ell}+H_{k}^{\star} L_{\ell}^{c}\right) \epsilon^{k \ell} .\right.
$$

As for our discussion of W-bosons, we expand this in powers of $1 / M$ to get a local effective field theory. The leading term is

$$
\mathcal{O}^{(5)}=\frac{g_{\nu}^{2}}{M} \bar{L}_{j}^{c} H_{i} \epsilon^{i j} L_{\ell} H_{k} \epsilon^{k \ell}+h . c .
$$

Plugging in $\langle H\rangle \neq 0$, this is a neutrino mass.
Place a bound on M assuming that the observed neutrinos have masses $m_{\nu}<0.5$ eV.
In terms of the parameterization from lecture, $m_{\nu}=\frac{c_{5} v^{2}}{2 \Lambda_{\text {new }}}$. This gives $\Lambda_{\text {new }} \geq$ $10^{14} \mathrm{GeV}$ for $c_{5} \sim 1$. We find $\Lambda_{\text {new }} / c_{5} \sim M$, so $M \geq 10^{14} \mathrm{GeV}$.

2. Gross-Neveu model.

Here's an example which illustrates the manipulations we did in describing the BCS phenomenon. Now that we've learned about fermionic path integrals, consider the partition function for an N-vector of fermionic spinor fields in D dimensions:

$$
Z=\int[d \psi d \bar{\psi}] e^{\mathbf{i} S[\psi]}, \quad S[\vec{\psi}]=\int \mathrm{d}^{D} x\left(\bar{\psi}^{a} \mathbf{i} \not \partial \psi^{a}-\frac{g}{N}\left(\bar{\psi}^{a} \psi^{a}\right)^{2}\right) .
$$

(a) At the free fixed point, what is the dimension of the coupling g as a function of the number of spacetime dimensions D ? Show that it is classically marginal in $D=2$, so that this action is (classically) scale invariant.
(b) We will show that this model in $D=2$ exhibits dimensional transmutation in the form of a dynamically generated mass gap. Here are the steps: first use the Hubbard-Stratonovich trick to replace ψ^{4} by $\sigma \psi^{2}+\sigma^{2}$ in the action, where σ is a scalar field. Then integrate out the ψ fields. Find the saddle point equation for σ; argue that the saddle point dominates the integral for large N. Find a translation invariant saddle point. Plug the saddle point configuration of σ back into the action for ψ and describe the resulting dynamics.
We can decouple the quartic term by writing

$$
\begin{equation*}
Z=\int[D \psi \bar{\psi}] e^{\mathbf{i} S[\psi]}=\int[D \psi D \bar{\psi} D \sigma] e^{\mathbf{i} S_{2}[\psi]+\mathbf{i} \int d^{D} x\left(\sigma \bar{\psi}^{a} \psi^{a}+h . c .\right)+\mathbf{i} \int \mathrm{d}^{D} x \frac{N \sigma^{2}(x)}{2 g}} \tag{1}
\end{equation*}
$$

Now the integral over ψ is gaussian:

$$
\int[D \psi D \bar{\psi} D \sigma] e^{\int d^{D} x \bar{\psi}^{a}(\mathbf{i} \not \mathbf{\not \partial \sigma}) \psi^{a}}=(\operatorname{det}(\mathbf{i} \not \partial+\sigma))^{N}=e^{N \operatorname{tr} \log (\mathbf{i} \not \partial+\sigma)} .
$$

The resulting path integral is

$$
Z=\int[D \sigma] e^{\mathbf{i} N S_{\mathrm{eff}}[\sigma]}
$$

with $S_{\text {eff }}[\sigma]=\int d^{D} x \frac{\sigma^{2}}{2 g}+\delta S[\sigma]$ where the term generated by the fermionic fluctuations is

$$
\delta S[\sigma]=\operatorname{tr} \log (\not \partial+\sigma) .
$$

We can take care of the spin indices by noticing that

$$
\begin{align*}
\operatorname{tr}_{\text {spin }} \log (\not \partial+\sigma) & =\frac{1}{2}\left(\operatorname{tr}_{\text {spin }} \log (\not \partial+\sigma)+\operatorname{tr}_{\text {spin }} \log (-\not \partial+\sigma)\right) \tag{2}\\
& =\frac{1}{2} \operatorname{tr}_{\text {spin }} \log \left(-\partial^{2}+\sigma^{2}\right) \stackrel{D \equiv 2}{=} \log \left(-\partial^{2}+\sigma^{2}\right) \tag{3}
\end{align*}
$$

where at the last step we used the fact that the Dirac spinor in 2D has two components.
If we assume that σ is constant in spacetime, we can do the trace in momentum space (V is the volume of spacetime):

$$
\begin{align*}
\operatorname{tr} \log \left(-\partial^{2}+\sigma^{2}\right) & =V \int \mathrm{\Phi}^{D} p \log \left(p^{2}+\sigma^{2}\right) \tag{4}\\
& \stackrel{\text { Wick rotate }}{=} \mathbf{i} V \frac{1}{2 \pi} \mathbf{i} \int_{0}^{\Lambda} p d p \log \left(p^{2}+\sigma^{2}\right) \tag{5}\\
& =\mathbf{i} \frac{V}{\pi}\left(-\sigma^{2} \log \frac{\sigma^{2}}{\Lambda^{2}}+\mathrm{UV} \text { divergent terms }\right) . \tag{6}
\end{align*}
$$

I introduced a hard UV cutoff, since we have no gauge invariance to preserve. At the last step I've assumed $\sigma \ll \Lambda$. We ignore the divergent constants. Because of the big honking factor of N in front of $S_{\text {eff }}$, the σ integral is dominated by its saddle point configuration, where

$$
0=\frac{\delta S_{\mathrm{eff}}}{\delta \sigma}=V\left(\frac{\sigma}{g}+\frac{2 \sigma}{\pi}(1+\log \sigma / \Lambda)\right)
$$

from which we conclude that there is a minimum for σ at $\sigma=\Lambda e^{-\frac{\pi}{g}} / \sqrt{e}$. (The figure at right is for $g=.3, \Lambda=1000$.)

Thus, the fermions get a mass of order $\Lambda e^{-\pi / g}$, non-perturbative in g, and parametrically smaller than the cutoff.

