University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022 Assignment 3

Due 11:59pm Monday, April 18, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Right-handed neutrinos.

Consider adding a right-handed singlet (under all gauge groups) neutrino N_{R} to the Standard Model. It may have a majorana mass M; and it may have a coupling g_{ν} to leptons, so that all the dimension ≤ 4 operators are

$$
\mathcal{L}_{N}=\bar{N}_{R} \mathrm{i} \not \partial N_{R}-\frac{M}{2} \bar{N}_{R}^{c} N_{R}-\frac{M}{2} \bar{N}_{R} N_{R}^{c}+\left(g_{\nu} \bar{N}_{R} H_{i}^{T} L_{j} \epsilon^{i j}+h . c .\right)
$$

where $N_{R}^{c}=C\left(\bar{N}_{R}\right)^{T}$ is the the charge conjugate field, $C=\mathbf{i} \gamma_{2} \gamma_{0}$ (in the Dirac representation), H is the Higgs doublet, L is the left-handed lepton doublet, containing ν_{L} and e_{L}. Take the mass M to be large compared to the electroweak scale. Integrate out the right-handed neutrinos at tree level. [Hint: you may find it useful to work in terms of the Majorana field

$$
N \equiv N_{R}+N_{R}^{c}
$$

which satisfies $N=N^{c}$.]
Show that the leading term in the expansion in $1 / M$ is a dimension- 5 operator made of Standard Model fields. Explain the consequences of this operator for neutrino physics, assuming a vacuum expectation value for the Higgs field.

Place a bound on M assuming that the observed neutrinos have masses $m_{\nu}<0.5$ eV.

2. Gross-Neveu model.

Here's an example which illustrates the manipulations we did in describing the BCS phenomenon. Now that we've learned about fermionic path integrals, consider the partition function for an N-vector of fermionic spinor fields in D dimensions:

$$
Z=\int[d \psi d \bar{\psi}] e^{\mathbf{i} S[\psi]}, \quad S[\vec{\psi}]=\int \mathrm{d}^{D} x\left(\bar{\psi}^{a} \mathbf{i} \not \partial \psi^{a}-\frac{g}{N}\left(\bar{\psi}^{a} \psi^{a}\right)^{2}\right) .
$$

(a) At the free fixed point, what is the dimension of the coupling g as a function of the number of spacetime dimensions D ? Show that it is classically marginal in $D=2$, so that this action is (classically) scale invariant.
(b) We will show that this model in $D=2$ exhibits dimensional transmutation in the form of a dynamically generated mass gap. Here are the steps: first use the Hubbard-Stratonovich trick to replace ψ^{4} by $\sigma \psi^{2}+\sigma^{2}$ in the action, where σ is a scalar field. Then integrate out the ψ fields. Find the saddle point equation for σ; argue that the saddle point dominates the integral for large N. Find a translation invariant saddle point. Plug the saddle point configuration of σ back into the action for ψ and describe the resulting dynamics.

