University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022
 Assignment 4 - Solutions

Due 11:59pm Monday, April 25, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Galilean transformation of non-relativistic fields.

Show that the action

$$
\begin{equation*}
S=\int d t d^{d} x\left(\Phi^{\star} \mathbf{i} \partial_{t} \Phi-\frac{1}{2 m} \vec{\nabla} \Phi^{\star} \cdot \vec{\nabla} \Phi-V(|\Phi|)\right) \tag{1}
\end{equation*}
$$

is invariant under Galilean boosts, in the form

$$
\begin{equation*}
\Phi(\vec{x}, t) \rightarrow \Phi^{\prime}\left(\vec{x}^{\prime}, t^{\prime}\right) \quad \text { with } \quad \Phi(\vec{x}, t)=e^{-\frac{i}{2} m v^{2} t+\mathbf{i} m \vec{v} \cdot \vec{x}} \Phi^{\prime}\left(\vec{x}^{\prime}, t^{\prime}\right) \tag{2}
\end{equation*}
$$

with $t^{\prime}=t, x_{i}^{\prime}=x_{i}-v_{i} t$.
Note that this is also how the nonrelativistic single-particle wavefunction must transform in order to preserve the Schrödinger equation.
Don't forget that $\frac{\partial}{\partial x^{\mu}}=\frac{\partial x^{\prime} \nu}{\partial x^{\mu}} \frac{\partial}{\partial x^{\prime \nu}}$.
Let $\Phi=e^{\mathrm{i} \Theta} \Phi^{\prime}$, so that

$$
\vec{\nabla} \Phi=e^{\mathrm{i} \Theta}\left(\mathrm{i} m \vec{v}+\vec{\nabla}^{\prime}\right) \Phi^{\prime}
$$

and

$$
\partial_{t} \Phi=e^{\mathbf{i} \Theta}\left(\frac{1}{2} m v^{2}+\mathbf{i} \partial_{t}\right) \Phi^{\prime}=e^{\mathbf{i} \Theta}\left(\mathbf{i} \partial_{t^{\prime}}-\mathbf{i} \vec{v} \cdot \vec{\nabla}^{\prime}+\frac{1}{2} m v^{2}\right) \Phi^{\prime} .
$$

In the last step of each line we used $\partial_{t}=\partial_{t^{\prime}}-v^{i} \partial_{i}$ and $\vec{\nabla}_{x}=\vec{\nabla}_{x^{\prime}}$. Therefore

$$
\begin{align*}
\mathcal{L}(\Phi) & =\left(\Phi^{\prime}\right)^{\star} e^{-\mathbf{i} \Theta} e^{\mathbf{i} \Theta}\left(\mathbf{i} \partial_{t^{\prime}}-\mathbf{i} \vec{v} \cdot \vec{\nabla}^{\prime}+\frac{1}{2} m v^{2}\right) \Phi^{\prime}-\frac{1}{2 m}\left(\Phi^{\prime}\right)^{\star}(\overleftarrow{\nabla}-\mathbf{i} m \vec{v}) e^{-\mathbf{i} \Theta} \cdot e^{\mathbf{i} \Theta}(\vec{\nabla}+\mathbf{i} m \vec{v}) \Phi^{\prime} \tag{3}\\
& =\mathcal{L}\left(\Phi^{\prime}\right)+\frac{m v^{2}}{2}\left|\Phi^{\prime}\right|^{2}-\frac{m^{2} v^{2}}{2 m}\left|\Phi^{\prime}\right|^{2}-\left(\Phi^{\prime}\right)^{\star} \mathbf{i} \vec{v} \cdot \vec{\nabla}^{\prime} \Phi^{\prime}+\frac{\mathbf{i} m}{2 m} \vec{v} \cdot\left(\Phi^{\prime}\right)^{\star} \vec{\nabla}^{\prime} \Phi^{\prime} \times 2-\vec{\nabla}^{\prime} \cdot\left(\frac{\mathbf{i}}{2} \vec{v}\left|\Phi^{\prime}\right|^{2}\right) . \tag{4}
\end{align*}
$$

The last term is a total derivative, and everything else cancels but $\mathcal{L}\left(\Phi^{\prime}\right)$. Note that the measure transforms trivially $d^{d} x d t=d^{d} x^{\prime} d t^{\prime}$ because $\operatorname{det} \frac{\partial\left(x^{\prime}, t^{\prime}\right)}{\partial(x, t)}=1$.
How does the boost act on the Goldstone mode in the symmetry-broken phase?

2. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are marginal. Keeping only these interactions, show that cactus diagrams (like this: \&) dominate.
The diagrams which dominate are made of the marginal 4-fermion vertices, which have the momenta equal and opposite in pairs, i.e. $V\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=$ $V\left(k,-k, k^{\prime},-k^{\prime}\right)$. This is automatic in cactus diagrams. The model which keeps only these terms is called the Reduced BCS model.
(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue that this correction to the propagator is innocuous and can be ignored.
These diagrams do not depend on the external momenta. Therefore, they are merely a renormalization of the chemical potential. Fixing the propagator according to the correct particle density therefore removes all effects of these diagrams.

To resum their effects we use the self-energy with the pink blob which satisfies

(c) Armed with these results, compute diagrammatically the Cooper-channel susceptibility (two-particle Green's function),

$$
\chi\left(\omega_{0}\right) \equiv\left\langle\mathcal{T} \psi_{\vec{k}, \omega_{3}, \downarrow}^{\dagger} \psi_{-\vec{k}, \omega_{4}, \uparrow}^{\dagger} \psi_{\vec{p}, \omega_{1}, \downarrow} \psi_{-\vec{p}, \omega_{2}, \uparrow}\right\rangle
$$

as a function of $\omega_{0} \equiv \omega_{1}+\omega_{2}$, the frequencies of the incoming particles. Think of χ as a two point function of the Cooper pair field $\Phi=\epsilon_{\alpha \beta} \psi_{\alpha} \psi_{\beta}$ at zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.

$$
\begin{align*}
\chi\left(\omega_{0}\right) & = \tag{5}\\
& =-\mathbf{i} V+(-\mathbf{i} V)^{2} \frac{1}{2} \int \mathrm{~d}^{d} k d \epsilon G\left(\epsilon+\omega_{0}, \vec{k}\right) G(-\epsilon,-\vec{k})+(-\mathbf{i} V)^{3}\left(\frac{1}{2}\right)^{2} \int G G \int G G+(6) \\
& \equiv-\mathbf{i} V\left(1-\frac{\mathbf{i}}{2} V \int G G+\left(-\frac{\mathbf{i}}{2} V \int G G\right)^{2}+\cdots\right) \tag{7}\\
& =-\mathbf{i} V\left(1-\mathcal{I}+\mathcal{I}^{2}+\cdots\right)=\frac{-\mathbf{i} V}{1+\mathcal{I}} \tag{8}
\end{align*}
$$

The $\frac{1}{2}$ is a symmetry factor.
(d) Do the integrals. In the loops, restrict the range of momenta to $|\epsilon(k)|<E_{D}$, the Debye energy, since it is electrons with these energies that experience attractive interactions.
Consider for simplicity a round Fermi surface. For doing integrals of functions singular near a round Fermi surface, approximate the dispersion relation as $\epsilon(k) \simeq v_{F}\left(|k|-k_{F}\right)$, so that $d^{d} k \simeq k_{F}^{d-1} \frac{d \xi}{v_{F}} d \Omega_{d-1}$. I recommend doing to the frequency integral first (by residues).
Now we have to do the integral.

$$
\begin{align*}
\mathcal{I} & =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k d \epsilon G\left(\epsilon+\omega_{0}, \vec{k}\right) G(-\epsilon,-\vec{k}) \tag{9}\\
& =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k d \epsilon \frac{1}{\left(\epsilon+\omega_{0}\right)(1+\mathbf{i} \eta)-\xi(\vec{k})} \frac{1}{(-\epsilon)(1+\mathbf{i} \eta)-\xi(-\vec{k})} \tag{10}\\
& =\frac{\mathbf{i}}{2} V \int \mathrm{~d}^{d} k \frac{2 \pi \mathbf{i}}{2 \pi}(-1)^{\operatorname{sign}(\xi(k))} \frac{1}{\omega_{0}-2 \xi(k)} \tag{11}\\
& =-\frac{V}{2} \int \mathrm{~d}^{d} k(-1)^{\operatorname{sign}(\xi(k))} \frac{1}{\omega_{0}-2 \xi(k)} \tag{12}
\end{align*}
$$

In the third line we assumed parity $\xi(k)=\xi(-k)$, and did the frequency integral by residues, as recommended. The orientation of the contour depends on the sign of $\xi(k)$. Now we use the approximation $d^{d} k \simeq k_{F}^{d-1} \frac{d \xi}{v_{F}} d \Omega_{d-1}$ to write

$$
\begin{align*}
\mathcal{I} & =-V \underbrace{\frac{\int \mathrm{~d}^{d-1} k}{2 v_{F}}}_{\equiv N}\left(\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}-2 \xi}-\int_{-E_{D}}^{0} \frac{d \xi}{\omega_{0}-2 \xi}\right) \tag{13}\\
& =-N V\left(\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}-2 \xi}-\int_{0}^{E_{D}} \frac{d \xi}{\omega_{0}+2 \xi}\right) \tag{14}\\
& =-N V\left(-\frac{1}{2} \log \frac{\omega_{0}-2 E_{D}}{\omega_{0}}-\frac{1}{2} \log \frac{\omega_{0}+2 E_{D}}{\omega_{0}}\right) \tag{15}\\
& \stackrel{\omega_{0} \ll E_{D}}{=} N V\left(\frac{1}{2} \log \frac{-2 E_{D}}{\omega_{0}}+\frac{1}{2} \log \frac{+2 E_{D}}{\omega_{0}}\right) \tag{16}\\
& =N V\left(\log \frac{2 E_{D}}{\omega_{0}}+\frac{\mathbf{i} \pi}{2}\right) . \tag{17}
\end{align*}
$$

Note that bubbles in the t-channel would give zero in this approximation because both poles would be on the same side of the frequency contour.
(e) Show that when $V<0$ is attractive, $\chi\left(\omega_{0}\right)$ has a pole. Does it represent a bound-state? Interpret this pole in the two-particle Green's function as
indicating an instability of the Fermi liquid to superconductivity. Compare the location of the pole to the energy E_{BCS} where the Cooper-channel interaction becomes strong.
The pole occurs at

$$
0=1+\mathcal{I}=1+N V\left(\log \frac{2 E_{D}}{\omega_{0}}+\frac{\mathbf{i} \pi}{2}\right)
$$

which says

$$
\omega_{0}=2 \mathbf{i} E_{D} e^{-\frac{1}{N V}} .
$$

Note the crucial factor of \mathbf{i}. This says that the pole is in the UHP of the ω_{0} plane. The fact that the pole occurs in the UHP of the ω_{0} plane means that the Fourier transform of this quantity grows exponentially in time (for short times at least). It is an instability of the Fermi liquid groundstate, not a boundstate.
(f) Cooper problem. [optional] We can compare this result to Cooper's influential analysis of the problem of two electrons interacting with each other in the presence of an inert Fermi sea. Consider a state with two electrons with antipodal momenta and opposite spin

$$
|\psi\rangle=\sum_{k} a_{k} \psi_{k, \uparrow}^{\dagger} \psi_{-k, \downarrow}^{\dagger}|F\rangle
$$

where $|F\rangle=\prod_{k<k_{F}} \psi_{k, \uparrow}^{\dagger} \psi_{k, \downarrow}^{\dagger}|0\rangle$ is a filled Fermi sea. Consider the Hamiltonian

$$
H=\sum_{k} \epsilon_{k} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma}+\sum_{k, k^{\prime}} V_{k, k^{\prime}} \psi_{k, \sigma}^{\dagger} \psi_{k, \sigma} \psi_{k^{\prime}, \sigma^{\prime}}^{\dagger} \psi_{k^{\prime}, \sigma^{\prime}}
$$

Write the Schrödinger equation as

$$
\left(\omega-2 \epsilon_{k}\right) a_{k}=\sum_{k^{\prime}} V_{k, k^{\prime}} a_{k^{\prime}} .
$$

Now assume (following Cooper) that the potential has the following form:

$$
V_{k, k^{\prime}}=V w_{k^{\prime}}^{\star} w_{k}, \quad w_{k}= \begin{cases}1, & 0<\epsilon_{k}<E_{D} \\ 0, & \text { else }\end{cases}
$$

Defining $C \equiv \sum_{k} \omega_{k}^{\star} a_{k}$, show that the Schrödinger equation requires

$$
\begin{equation*}
1=V \sum_{k} \frac{\left|w_{k}\right|^{2}}{\omega-2 \epsilon_{k}} . \tag{18}
\end{equation*}
$$

Assuming V is attractive, find a bound state. Compare (3) to the condition for a pole found from the bubble chains above.
This leads to a boundstate at ω such that

$$
1=V N \int_{0}^{E_{D}} \frac{d \xi}{\omega-2 \xi}=-\frac{V N}{2} \log \left(\frac{-2 E_{D}}{\omega}\right)
$$

which says

$$
\omega=-2 E_{D} e^{-\frac{2}{\mid V N}} .
$$

The Cooper bound-state equation (3) is just what we would get if we left out the contribution of the virtual electrons with $\xi<0$ - the ones below the Fermi energy (which in fact I did when I was first writing this problem). This results in a factor of two in the exponent (so the Cooper pair binding energy is exponentially larger than the magnitude of the frequency found above). More importantly it results in a minus sign rather than a factor of \mathbf{i} (a boundstate energy should be negative). Including (correctly) the effects of fluctuations below Fermi sea level changes the boundstate to an instability. I recommend the book by Schrieffer (called Superconductivity) for this subject.
3. Fermion propagator in a metal. [bonus problem]

Starting from

$$
\begin{equation*}
G(p, t)=-\frac{1}{2 \pi \mathbf{i}}\langle\mathrm{gs}| \mathcal{T} c_{p}(t) c_{p}^{\dagger}(0)|\mathrm{gs}\rangle \tag{19}
\end{equation*}
$$

and using the free fermion time evolution operator, and the fact that the groundstate has all levels filled up to the Fermi level:

$$
\langle\mathrm{gs}| c_{p}^{\dagger} c_{p}|g s\rangle= \begin{cases}1, & \epsilon_{p}<0 \tag{20}\\ 0, & \epsilon_{p}>0\end{cases}
$$

show that the free fermion propagator can be written as

$$
\begin{equation*}
G(p, \omega)=\frac{a}{\omega-\epsilon_{p}-\mathbf{i} \eta b \operatorname{sgn}\left(\epsilon_{p}\right)} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
G(p, \omega)=\frac{a^{\prime}}{\omega\left(1+\mathbf{i} b^{\prime} \eta\right)-\epsilon_{p}} \tag{22}
\end{equation*}
$$

where $\eta=0^{+}$is an infinitesimal for some constants $a, b, a^{\prime}, b^{\prime}$ to be determined.

