
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2022
Assignment 4 – Solutions

Due 11:59pm Monday, April 25, 2022

Thanks in advance for following the guidelines on HW01. Please ask me by email

if you have any trouble.

1. Galilean transformation of non-relativistic fields.

Show that the action

S =

∫
dtddx

(
Φ?i∂tΦ−

1

2m
~∇Φ? · ~∇Φ− V (|Φ|)

)
(1)

is invariant under Galilean boosts, in the form

Φ(~x, t)→ Φ′(~x′, t′) with Φ(~x, t) = e−
i
2
mv2t+im~v·~xΦ′(~x′, t′) (2)

with t′ = t, x′i = xi − vit.

Note that this is also how the nonrelativistic single-particle wavefunction must

transform in order to preserve the Schrödinger equation.

Don’t forget that ∂
∂xµ

= ∂x
′ν

∂xµ
∂

∂x′ν
.

Let Φ = eiΘΦ′, so that
~∇Φ = eiΘ

(
im~v + ~∇′

)
Φ′

and

∂tΦ = eiΘ
(

1

2
mv2 + i∂t

)
Φ′ = eiΘ

(
i∂t′ − i~v · ~∇′ + 1

2
mv2

)
Φ′.

In the last step of each line we used ∂t = ∂t′ − vi∂i and ~∇x = ~∇x′ . Therefore

L(Φ) = (Φ′)?e−iΘeiΘ
(

i∂t′ − i~v · ~∇′ + 1

2
mv2

)
Φ′ − 1

2m
(Φ′)?(

←
∇ − im~v)e−iΘ · eiΘ(~∇+ im~v)Φ′

(3)

= L(Φ′) +
mv2

2
|Φ′|2 − m2v2

2m
|Φ′|2 − (Φ′)?i~v · ~∇′Φ′ + im

2m
~v · (Φ′)?~∇′Φ′ × 2− ~∇′ ·

(
i

2
~v|Φ′|2

)
.

(4)

The last term is a total derivative, and everything else cancels but L(Φ′). Note

that the measure transforms trivially ddxdt = ddx′dt′ because det ∂(x′,t′)
∂(x,t)

= 1.

How does the boost act on the Goldstone mode in the symmetry-broken phase?

1



2. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are

marginal. Keeping only these interactions, show that cactus diagrams (like

this: ) dominate.

The diagrams which dominate are made of the marginal 4-fermion vertices,

which have the momenta equal and opposite in pairs, i.e. V (k1, k2, k3, k4) =

V (k,−k, k′,−k′). This is automatic in cactus diagrams. The model which

keeps only these terms is called the Reduced BCS model.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue

that this correction to the propagator is innocuous and can be ignored.

These diagrams do not depend on the external momenta. Therefore, they are

merely a renormalization of the chemical potential. Fixing the propagator

according to the correct particle density therefore removes all effects of these

diagrams.

To resum their effects we use the self-energy with the pink blob which sat-

isfies

.

(c) Armed with these results, compute diagrammatically the Cooper-channel

susceptibility (two-particle Green’s function),

χ(ω0) ≡
〈
T ψ†~k,ω3,↓

ψ†
−~k,ω4,↑

ψ~p,ω1,↓ψ−~p,ω2,↑

〉
as a function of ω0 ≡ ω1 + ω2, the frequencies of the incoming particles.

Think of χ as a two point function of the Cooper pair field Φ = εαβψαψβ at

zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.

χ(ω0) = + · · · (5)

= −iV + (−iV )2 1

2

∫
d̄dkdεG(ε+ ω0, ~k)G(−ε,−~k) + (−iV )3

(
1

2

)2 ∫
GG

∫
GG+ · · ·(6)

≡ −iV

(
1− i

2
V

∫
GG+ (− i

2
V

∫
GG)2 + · · ·

)
(7)

= −iV
(
1− I + I2 + · · ·

)
=
−iV

1 + I
. (8)
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The 1
2

is a symmetry factor.

(d) Do the integrals. In the loops, restrict the range of momenta to |ε(k)| < ED,

the Debye energy, since it is electrons with these energies that experience

attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-

tions singular near a round Fermi surface, approximate the dispersion rela-

tion as ε(k) ' vF (|k|−kF ), so that ddk ' kd−1
F

dξ
vF
dΩd−1. I recommend doing

to the frequency integral first (by residues).

Now we have to do the integral.

I =
i

2
V

∫
d̄dkdεG(ε+ ω0, ~k)G(−ε,−~k) (9)

=
i

2
V

∫
d̄dkdε

1

(ε+ ω0)(1 + iη)− ξ(~k)

1

(−ε)(1 + iη)− ξ(−~k)
(10)

=
i

2
V

∫
d̄dk

2πi

2π
(−1)sign(ξ(k)) 1

ω0 − 2ξ(k)
(11)

= −V
2

∫
d̄dk(−1)sign(ξ(k)) 1

ω0 − 2ξ(k)
(12)

In the third line we assumed parity ξ(k) = ξ(−k), and did the frequency in-

tegral by residues, as recommended. The orientation of the contour depends

on the sign of ξ(k). Now we use the approximation ddk ' kd−1
F

dξ
vF
dΩd−1 to

write

I = −V
∫

d̄d−1k

2vF︸ ︷︷ ︸
≡N

(∫ ED

0

dξ

ω0 − 2ξ
−
∫ 0

−ED

dξ

ω0 − 2ξ

)
(13)

= −NV
(∫ ED

0

dξ

ω0 − 2ξ
−
∫ ED

0

dξ

ω0 + 2ξ

)
(14)

= −NV
(
−1

2
log

ω0 − 2ED
ω0

− 1

2
log

ω0 + 2ED
ω0

)
(15)

ω0�ED' NV

(
1

2
log
−2ED
ω0

+
1

2
log

+2ED
ω0

)
(16)

= NV

(
log

2ED
ω0

+
iπ

2

)
. (17)

Note that bubbles in the t-channel would give zero in this approximation

because both poles would be on the same side of the frequency contour.

(e) Show that when V < 0 is attractive, χ(ω0) has a pole. Does it represent

a bound-state? Interpret this pole in the two-particle Green’s function as
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indicating an instability of the Fermi liquid to superconductivity. Com-

pare the location of the pole to the energy EBCS where the Cooper-channel

interaction becomes strong.

The pole occurs at

0 = 1 + I = 1 +NV

(
log

2ED
ω0

+
iπ

2

)
which says

ω0 = 2iEDe
− 1
NV .

Note the crucial factor of i. This says that the pole is in the UHP of the

ω0 plane. The fact that the pole occurs in the UHP of the ω0 plane means

that the Fourier transform of this quantity grows exponentially in time (for

short times at least). It is an instability of the Fermi liquid groundstate,

not a boundstate.

(f) Cooper problem. [optional] We can compare this result to Cooper’s in-

fluential analysis of the problem of two electrons interacting with each other

in the presence of an inert Fermi sea. Consider a state with two electrons

with antipodal momenta and opposite spin

|ψ〉 =
∑
k

akψ
†
k,↑ψ

†
−k,↓ |F 〉

where |F 〉 =
∏

k<kF
ψ†k,↑ψ

†
k,↓ |0〉 is a filled Fermi sea. Consider the Hamilto-

nian

H =
∑
k

εkψ
†
k,σψk,σ +

∑
k,k′

Vk,k′ψ
†
k,σψk,σψ

†
k′,σ′ψk′,σ′ .

Write the Schrödinger equation as

(ω − 2εk)ak =
∑
k′

Vk,k′ak′ .

Now assume (following Cooper) that the potential has the following form:

Vk,k′ = V w?k′wk, wk =

{
1, 0 < εk < ED

0, else
.

Defining C ≡
∑

k ω
?
kak, show that the Schrödinger equation requires

1 = V
∑
k

|wk|2

ω − 2εk
. (18)
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Assuming V is attractive, find a bound state. Compare (3) to the condition

for a pole found from the bubble chains above.

This leads to a boundstate at ω such that

1 = V N

∫ ED

0

dξ

ω − 2ξ
= −V N

2
log

(
−2ED
ω

)
which says

ω = −2EDe
− 2

|V |N .

The Cooper bound-state equation (3) is just what we would get if we left

out the contribution of the virtual electrons with ξ < 0 – the ones below

the Fermi energy (which in fact I did when I was first writing this problem).

This results in a factor of two in the exponent (so the Cooper pair binding

energy is exponentially larger than the magnitude of the frequency found

above). More importantly it results in a minus sign rather than a factor

of i (a boundstate energy should be negative). Including (correctly) the

effects of fluctuations below Fermi sea level changes the boundstate to an

instability. I recommend the book by Schrieffer (called Superconductivity)

for this subject.

3. Fermion propagator in a metal. [bonus problem]

Starting from

G(p, t) = − 1

2πi
〈gs| T cp(t)c†p(0) |gs〉 (19)

and using the free fermion time evolution operator, and the fact that the ground-

state has all levels filled up to the Fermi level:

〈gs| c†pcp |gs〉 =

{
1, εp < 0

0, εp > 0
(20)

show that the free fermion propagator can be written as

G(p, ω) =
a

ω − εp − iηbsgn(εp)
(21)

or

G(p, ω) =
a′

ω(1 + ib′η)− εp
(22)

where η = 0+ is an infinitesimal for some constants a, b, a′, b′ to be determined.
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