
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215C QFT Spring 2022
Assignment 4

Due 11:59pm Monday, April 25, 2022

Thanks in advance for following the guidelines on HW01. Please ask me by email

if you have any trouble.

1. Galilean transformation of non-relativistic fields.

Show that the action

S =

∫
dtddx

(
Φ?i∂tΦ−

1

2m
~∇Φ? · ~∇Φ− V (|Φ|)

)
(1)

is invariant under Galilean boosts, in the form

Φ(~x, t)→ Φ′(~x′, t′) with Φ(~x, t) = e−
i
2
mv2t+im~v·~xΦ′(~x′, t′) (2)

with t′ = t, x′i = xi − vit.

Note that this is also how the nonrelativistic single-particle wavefunction must

transform in order to preserve the Schrödinger equation.

Don’t forget that ∂
∂xµ

= ∂x
′ν

∂xµ
∂

∂x′ν
.

How does the boost act on the Goldstone mode in the symmetry-broken phase?

2. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are

marginal. Keeping only these interactions, show that cactus diagrams (like

this: ) dominate.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue

that this correction to the propagator is innocuous and can be ignored.

(c) Armed with these results, compute diagrammatically the Cooper-channel

susceptibility (two-particle Green’s function),

χ(ω0) ≡
〈
T ψ†~k,ω3,↓

ψ†
−~k,ω4,↑

ψ~p,ω1,↓ψ−~p,ω2,↑

〉
as a function of ω0 ≡ ω1 + ω2, the frequencies of the incoming particles.

Think of χ as a two point function of the Cooper pair field Φ = εαβψαψβ at

zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.
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(d) Do the integrals. In the loops, restrict the range of momenta to |ε(k)| < ED,

the Debye energy, since it is electrons with these energies that experience

attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-

tions singular near a round Fermi surface, approximate the dispersion rela-

tion as ε(k) ' vF (|k|−kF ), so that ddk ' kd−1F
dξ
vF
dΩd−1. I recommend doing

to the frequency integral first (by residues).

(e) Show that when V < 0 is attractive, χ(ω0) has a pole. Does it represent

a bound-state? Interpret this pole in the two-particle Green’s function as

indicating an instability of the Fermi liquid to superconductivity. Com-

pare the location of the pole to the energy EBCS where the Cooper-channel

interaction becomes strong.

(f) Cooper problem. [optional] We can compare this result to Cooper’s in-

fluential analysis of the problem of two electrons interacting with each other

in the presence of an inert Fermi sea. Consider a state with two electrons

with antipodal momenta and opposite spin

|ψ〉 =
∑
k

akψ
†
k,↑ψ

†
−k,↓ |F 〉

where |F 〉 =
∏

k<kF
ψ†k,↑ψ

†
k,↓ |0〉 is a filled Fermi sea. Consider the Hamilto-

nian

H =
∑
k

εkψ
†
k,σψk,σ +

∑
k,k′

Vk,k′ψ
†
k,σψk,σψ

†
k′,σ′ψk′,σ′ .

Write the Schrödinger equation as

(ω − 2εk)ak =
∑
k′

Vk,k′ak′ .

Now assume (following Cooper) that the potential has the following form:

Vk,k′ = V w?k′wk, wk =

{
1, 0 < εk < ED

0, else
.

Defining C ≡
∑

k ω
?
kak, show that the Schrödinger equation requires

1 = V
∑
k

|wk|2

ω − 2εk
. (3)

Assuming V is attractive, find a bound state. Compare (3) to the condition

for a pole found from the bubble chains above.
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3. Fermion propagator in a metal. [bonus problem]

Starting from

G(p, t) = − 1

2πi
〈gs| T cp(t)c†p(0) |gs〉 (4)

and using the free fermion time evolution operator, and the fact that the ground-

state has all levels filled up to the Fermi level:

〈gs| c†pcp |gs〉 =

{
1, εp < 0

0, εp > 0
(5)

show that the free fermion propagator can be written as

G(p, ω) =
a

ω − εp − iηbsgn(εp)
(6)

or

G(p, ω) =
a′

ω(1 + ib′η)− εp
(7)

where η = 0+ is an infinitesimal for some constants a, b, a′, b′ to be determined.

3


