University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 215C QFT Spring 2022
Assignment 4

Due 11:59pm Monday, April 25, 2022

Thanks in advance for following the guidelines on HWO01. Please ask me by email
if you have any trouble.

1. Galilean transformation of non-relativistic fields.

Show that the action
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is invariant under Galilean boosts, in the form
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with ¢/ = t, 2} = x; — v;t.
Note that this is also how the nonrelativistic single-particle wavefunction must

transform in order to preserve the Schrédinger equation.

Don’t forget that ;2. = 92”9
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How does the boost act on the Goldstone mode in the symmetry-broken phase?

2. Diagrammatic understanding of BCS instability of Fermi liquid theory.

(a) Recall that only the four-fermion interactions with special kinematics are
marginal. Keeping only these interactions, show that cactus diagrams (like

this: % ) dominate.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue
that this correction to the propagator is innocuous and can be ignored.

(c) Armed with these results, compute diagrammatically the Cooper-channel
susceptibility (two-particle Green’s function),
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as a function of wy = wy + woq, the frequencies of the incoming particles.
Think of x as a two point function of the Cooper pair field ® = €,51,3 at
Zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.
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(d)

Do the integrals. In the loops, restrict the range of momenta to |e(k)| < Ep,
the Debye energy, since it is electrons with these energies that experience
attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-
tions singular near a round Fermi surface, approximate the dispersion rela-
tion as e(k) ~ vp(|k| — kr), so that d%k ~ k%’lj—ﬁdﬁd,l. I recommend doing
to the frequency integral first (by residues).

Show that when V' < 0 is attractive, y(wo) has a pole. Does it represent
a bound-state? Interpret this pole in the two-particle Green’s function as
indicating an instability of the Fermi liquid to superconductivity. Com-
pare the location of the pole to the energy Egcg where the Cooper-channel
interaction becomes strong.

Cooper problem. [optional] We can compare this result to Cooper’s in-
fluential analysis of the problem of two electrons interacting with each other
in the presence of an inert Fermi sea. Consider a state with two electrons
with antipodal momenta and opposite spin
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where |F) = [T, w,tﬁw,:’ 110 is a filled Fermi sea. Consider the Hamilto-
nian
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Write the Schrodinger equation as

(w - QEk)CLk = Z th/ak/.
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Now assume (following Cooper) that the potential has the following form:
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Defining C' = )", wjay, show that the Schrodinger equation requires

1=vy wnl” (3)
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Assuming V' is attractive, find a bound state. Compare (3) to the condition
for a pole found from the bubble chains above.



3. Fermion propagator in a metal. [bonus problem]

Starting from

G(p,1) = — o {g5] T, (£)ch (0) Jgs) (4)

27i
and using the free fermion time evolution operator, and the fact that the ground-
state has all levels filled up to the Fermi level:
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show that the free fermion propagator can be written as
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where 7 = 0" is an infinitesimal for some constants a,b, a’, b’ to be determined.



