University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022 Assignment 5

Due 11:59pm Monday, May 2, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Boson coherent states brain warmers.

Verify the following identities for the coherent state $|\phi\rangle=e^{\phi \mathbf{a}^{\dagger}}|0\rangle$ of a single mode.
(a)

$$
\left\langle\phi_{1} \mid \phi_{2}\right\rangle=e^{\phi_{1}^{\star} \phi_{2}} .
$$

(b)

$$
\mathbb{1} \equiv \sum_{n=0}^{\infty}|n\rangle\langle n|=\int \frac{d \phi d \phi^{\star}}{\pi} e^{-|\phi|^{2}}|\phi\rangle\langle\phi| .
$$

(c)

$$
\operatorname{tr} \cdot=\int \frac{d \phi d \phi^{\star}}{\pi} e^{-|\phi|^{2}}\langle\phi| \cdot|\phi\rangle .
$$

2. Grassmann exercises.

(a) A useful device is the integral representation of the grassmann delta function. Show that

$$
-\int d \bar{\psi}_{1} e^{-\bar{\psi}_{1}\left(\psi_{1}-\psi_{2}\right)}=\delta\left(\psi_{1}-\psi_{2}\right)
$$

in the sense that $\int d \psi_{1} \delta\left(\psi_{1}-\psi_{2}\right) f\left(\psi_{1}\right)=f\left(\psi_{2}\right)$ for any grassmann function f. (Notice that since the grassmann delta function is not even, it matters on which side of the δ we put the function: $\int d \psi_{1} f\left(\psi_{1}\right) \delta\left(\psi_{1}-\psi_{2}\right)=f\left(-\psi_{2}\right) \neq$ $f\left(\psi_{2}\right)$.)
(b) Recall the resolution of the identity the Hilbert space of a single fermion mode in terms of fermion coherent states

$$
\begin{equation*}
\mathbb{1} \equiv \sum_{n=0}^{1}|n\rangle\langle n|=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}|\psi\rangle\langle\bar{\psi}| . \tag{1}
\end{equation*}
$$

Show that $\mathbb{1}^{2}=\mathbb{1}$. (The previous part may be useful.)
(c) In lecture I claimed that a representation of the trace of a bosonic operator was

$$
\operatorname{tr} \mathbf{A}=\int d \bar{\psi} d \psi e^{-\bar{\psi} \psi}\langle-\bar{\psi}| \mathbf{A}|\psi\rangle
$$

and the minus sign in the bra had important consequences.
(Here $\langle-\bar{\psi}| \mathbf{c}^{\dagger}=\langle-\bar{\psi}|(-\bar{\psi})$).
Check that using this expression you get the correct answer for

$$
\operatorname{tr}\left(a+b \mathbf{c}^{\dagger} \mathbf{c}\right)
$$

where a, b are ordinary numbers.
(d) Prove the identity (1) by expanding the coherent states in the number basis.

3. Fermionic coherent state exercise.

Consider a collection of fermionic modes c_{i} with quadratic hamiltonian $H=$ $\sum_{i j} h_{i j} c_{i}^{\dagger} c_{j}$, with $h=h^{\dagger}$.
(a) Compute tre $e^{-\beta H}$ by changing basis to the eigenstates of $h_{i j}$ (the singleparticle hamiltonian) and performing the trace in that basis: tr... $=\prod_{\epsilon} \sum_{n_{\epsilon}=c_{\epsilon}^{\dagger} c_{\epsilon}=0,1} \cdots$
(b) Compute tre $e^{-\beta H}$ by coherent state path integral. Compare!
[Hint: to do the Matsubara sum, it is helpful to use an integral representation such as

$$
\sum_{n} f\left(\mathbf{i} \omega_{n}\right)=\frac{1}{2 \pi \mathbf{i}} \oint_{C} \frac{\beta d z}{e^{\beta z}+1} f(z)
$$

where C is a contour that encircles all the poles of $\frac{1}{e^{\beta z}+1}$.]
(c) [super bonus problem] Consider the case where $h_{i j}$ is a random matrix. What can you say about the thermodynamics?

4. Topological terms in QM.

The purpose of this problem is to demonstrate that total derivative terms in the action (like the θ term in QCD) do affect the physics.
The euclidean path integral for a particle on a ring with magnetic flux $\theta=\int \vec{B} \cdot \mathrm{~d} \vec{a}$ through the ring is given by

$$
Z=\int[D \phi] e^{-\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{m}{2} \dot{\phi}^{2}-\mathbf{i} \frac{\theta}{2 \pi} \dot{\phi}\right)}
$$

Here

$$
\begin{equation*}
\phi \equiv \phi+2 \pi \tag{2}
\end{equation*}
$$

is a coordinate on the ring. Because of the identification (6), ϕ need not be a single-valued function of τ - it can wind around the ring. On the other hand, $\dot{\phi}$ is single-valued and periodic and hence has an ordinary Fourier decomposition. This means that we can expand the field as

$$
\begin{equation*}
\phi(\tau)=\frac{2 \pi}{\beta} Q \tau+\sum_{\ell \in \mathbb{Z} \backslash 0} \phi_{\ell} e^{\mathrm{i} \frac{2 \pi}{\beta} \ell \tau} \tag{3}
\end{equation*}
$$

(a) Show that the $\dot{\phi}$ term in the action does not affect the classical equations of motion. In this sense, it is a topological term.
(b) Using the decomposition (7), write the partition function as a sum over topological sectors labelled by the winding number $Q \in \mathbb{Z}$ and calculate it explicitly.
[Hint: use the Poisson resummation formula

$$
\sum_{n} f(n)=\sum_{l} \hat{f}(2 \pi l)
$$

where $\hat{f}(p)=\int d x e^{-\mathbf{i} p x} f(x)$ is the fourier transform of f.]
(c) Use the result from the previous part to determine the energy spectrum as a function of θ.
(d) Derive the canonical momentum and Hamiltonian from the action above and verify the spectrum.
(e) Consider what happens in the limit $m \rightarrow 0, \theta \rightarrow \pi$ with $X \equiv \frac{\theta-\pi}{m} \sim \beta^{-1}$ fixed. Interpret the result as the partition function for a spin $1 / 2$ particle. What is the meaning of the ratio X in this interpretation?

