University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022 Assignment 6

Due 11:59pm Monday, May 9, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Brain-warmers on spin coherent states.

(a) Show that

$$
\vec{n}=z^{\dagger} \overrightarrow{\boldsymbol{\sigma}} z
$$

where $\vec{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ is a unit vector, and z_{α} are the components of the (normalized) spin coherent state $|\vec{n}\rangle(\boldsymbol{\sigma} \cdot \vec{n}|\vec{n}\rangle=|\vec{n}\rangle)$ in the Z-eigenbasis.
(b) In the same notation, check that

$$
\left\langle\vec{n}_{1} \mid \vec{n}_{2}\right\rangle=z_{1}^{\dagger} z_{2}
$$

(c) Check that

$$
\mathbb{1}_{2 \times 2}=\int \frac{d^{2} n}{2 \pi}|\vec{n}\rangle\langle\vec{n}| .
$$

(d) Check that

$$
\int d t \mathbf{i} z^{\dagger} \dot{z}=\int d t \mathbf{i} \frac{1}{2}(\cos \theta \dot{\phi}+\dot{\psi})=2 \pi W_{0}[\hat{n}] .
$$

(e) Show that

$$
\langle\check{n}| \vec{h} \cdot \overrightarrow{\mathbf{S}}|\check{n}\rangle=s \vec{h} \cdot \check{n}
$$

where $|\check{n}\rangle=\mathcal{R}|s, s\rangle$ is a coherent state of spin s (where $|s, s\rangle$ is the eigenvector of \mathbf{S}^{z} with maximal eigenvalue, and \mathcal{R} is the rotation operator which takes \check{z} to \check{n}).
(f) Show that for several spins and $i \neq j$

$$
\langle\check{n}| \overrightarrow{\mathbf{S}}_{i} \cdot \overrightarrow{\mathbf{S}}_{j}|\check{n}\rangle=s^{2} \check{n}_{i} \cdot \check{n}_{j},
$$

where now $|\check{n}\rangle \equiv \otimes_{j}\left(\mathcal{R}_{i}\left|s_{i}\right\rangle\right)$ is a product of coherent states of each of the spins individually.

2. Brain-warmer on Schwinger bosons.

Recall the Schwinger-boson representation of the $\mathrm{SU}(2)$ algebra:

$$
\begin{equation*}
\mathbf{S}^{+}=a^{\dagger} b, \mathbf{S}^{-}=b^{\dagger} a, \mathbf{S}^{z}=\frac{1}{2}\left(a^{\dagger} a-b^{\dagger} b\right), \tag{1}
\end{equation*}
$$

where the modes a, b satisfy $\left[a, a^{\dagger}\right]=1=\left[b, b^{\dagger}\right],[a, b]=\left[a, b^{\dagger}\right]=0$. This is the algebra of a simple harmonic oscillator in two dimensions,

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right) .
$$

Is the $\operatorname{SU}(2)$ a symmetry of this Hamiltonian? How does it act on the oscillator coordinates? Check that the oscillator algebra does indeed imply that $\overrightarrow{\mathbf{S}}$ defined this way satisfy the $\operatorname{SU}(2)$ algebra.

3. Geometric Quantization of the 2-torus.

Redo the analysis that we did in lecture for the two-sphere for the case of the two-torus, $S^{1} \times S^{1}$. The coordinates on the torus are $(x, y) \simeq(x+2 \pi, y+2 \pi)$; use $\frac{N}{2 \pi} \mathrm{~d} x \wedge \mathrm{~d} y$ as the symplectic form. Show that the resulting Hilbert space represents the Heisenberg algebra

$$
e^{\mathbf{i x}} e^{\mathbf{i} \mathbf{y}}=e^{\mathbf{i} \mathbf{y}} e^{\mathbf{i x}} e^{\frac{2 \pi \mathrm{i}}{N}}
$$

(I am using boldface letters for operators.) The irreducible representation of this algebra is the same Hilbert space as a particle on a periodic one-dimensional lattice with N sites.

4. Particle on a sphere with a monopole inside.

Consider a particle of mass m and electric charge e with action

$$
S[\vec{x}]=\int \mathrm{d} t\left(\frac{1}{2} m \dot{\vec{x}}^{2}+e \dot{\vec{x}} \cdot \vec{A}(\vec{x})\right)
$$

constrained to move on a two sphere of radius r in three-space, $\vec{x}^{2}=r^{2}$. Suppose further that there is a magnetic monopole inside this sphere: this means that $4 \pi g=\int_{S^{2}} \vec{B} \cdot \mathrm{~d} \vec{a}=\int_{S^{2}} F$, where $F=\mathrm{d} A$. (Since the particle lives only at $\vec{x}^{2}=r^{2}$, the form of the field in the core of the monopole is not relevant here.)
(a) Find an expression for $A=A_{i} \mathrm{~d} x^{i}=A_{\theta} \mathrm{d} \theta+A_{\varphi} \mathrm{d} \varphi$ such that $F=\mathrm{d} A$ has flux $4 \pi g$ through the sphere.
(b) Show that the Witten argument gives the Dirac quantization condition $2 e g \in$ \mathbb{Z}.
(c) Take the limit $m \rightarrow 0$. Count the states in the lowest Landau level. Compare with the calculation in lecture for coherent state quantization of a spin-s.

