University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022 Assignment 7

Due 11:59pm Monday, May 16, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Kondo problem problem. Consider a spinful Fermi liquid (treat it as free) in d dimensions coupled to a single spin s located at the origin. They are coupled by the Kondo interaction

$$
H_{K}=J_{K} \mathbf{c}^{\dagger} \vec{\sigma} \mathbf{c} \cdot \overrightarrow{\mathbf{S}}
$$

(a) Make a coherent state path integral representation for both the fermions and the spin. Write the action in Euclidean time.
(b) Find the Feynman rules for perturbation theory about $J_{K}=0$: the propagator for ψ (the fermion coherent state variable), the propagator for z (the spin coherent state variable, $\vec{n}=z^{\dagger} \vec{\sigma} z$), and the interaction vertex.
(c) Find the one-loop beta function for the Kondo coupling.

Two hints about how to proceed: (1) Recall from our previous discussion the methods for doing momentum integrals over functions peaked on a round Fermi surface. (2) Integrate out a shell of momentum modes with $|k| \in$ $(\Lambda / b, \Lambda)$, where Λ is a UV cutoff (the bandwidth), and b is the RG parameter.
(d) Solve the beta function equation for the running of the coupling, $J(b)$.
(e) Some poetry: at finite temperature, the system explores states in a shell of width T around the Fermi surface. In your solution for $J(b)$ make the replacement $b=\Lambda /(\Lambda / b)=T / T_{F}$ to find $J_{\text {eff }}(T)$. Assuming that the bare J_{K} is antiferromagnetic, find the Kondo temperature T_{K} defined by $1=$ $J_{e f f}\left(T_{K}\right)$.
(f) What happens when the Kondo coupling becomes strong? Unlike QCD, here we can answer this question. Study the limit of the hamiltonian where J_{K} is the largest scale (so we may ignore the kinetic terms of the fermions at leading order) and find the groundstate.

2. Potentials for matrix-valued fields.

(a) By a symmetry transformation $\Sigma \rightarrow g_{L} \Sigma g_{R}^{\dagger}$ can we put a complex matrix Σ in the form $\Sigma=\left(\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right)$?
(b) Consider the $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R^{-}}$-symmetric potential

$$
\begin{equation*}
V(\Sigma)=-m^{2} \operatorname{tr} \Sigma \Sigma^{\dagger}+\frac{\lambda}{4}\left(\operatorname{tr} \Sigma \Sigma^{\dagger}\right)^{2}+g \operatorname{tr} \Sigma \Sigma^{\dagger} \Sigma \Sigma^{\dagger} \tag{1}
\end{equation*}
$$

Show that for any $g>0$ this potential has a minimum at $\langle\Sigma\rangle=\frac{v}{\sqrt{2}}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Find v. Show that if $g=0$ there are other minima which are not related by rotations $\Sigma \rightarrow g_{L} \Sigma g_{R}^{\dagger}$.
(c) [more optional] Now consider a hermitian-matrix-valued field $\Phi=\Phi^{a} T^{a}$. Suppose T^{a} are generators of the adjoint of $\operatorname{SU}(5)$, so there are 24 components of Φ^{a}. In order for $\operatorname{SU}(5)$ grand unification to work, there must be a potential for such a Higgs field Φ that has a minimum of the form

$$
\langle\Phi\rangle=v \operatorname{diag}(2,2,2,-3,-3) \equiv \Phi_{3,2}
$$

which breaks $\operatorname{SU}(5)$ down to $\mathrm{SU}(3)_{\text {color }} \times \mathrm{SU}(2)_{\text {weak }}$. Consider the most general quartic potential for Φ which is invariant under $\operatorname{SU}(5)$:

$$
V=-m^{2} \operatorname{tr} \Phi^{2}+a \operatorname{tr} \Phi^{4}+b\left(\operatorname{tr} \Phi^{2}\right)^{2}
$$

Choose a basis where $\Phi=v \operatorname{diag}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$, with $\sum_{i=1}^{5} a_{i}=0$. (Impose this last condition with a Lagrange multiplier.)
For what values of m, a, b is $\Phi_{3,2}$ an extremum?
Show that $\Phi_{3,2}$ is a minimum.
Find all possible minima of this potential.
For the minimum of the form $\langle\Phi\rangle \equiv \Phi_{4,1}=v \operatorname{diag}(1,1,1,1,-4)$, what are the masses of the massive gauge bosons, and what is the unbroken gauge group?

