University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215C QFT Spring 2022 Assignment 9

Due 11:59pm Monday, May 30, 2022
Thanks in advance for following the guidelines on HW01. Please ask me by email if you have any trouble.

1. Brain-warmer. Find the coefficient \mathcal{N}_{s} in the coherent state representation of the spin operator for general spin s

$$
\mathbf{S}^{a}=\mathcal{N}_{s} \int d n|\check{n}\rangle\langle\check{n}| \check{n}^{a} .
$$

2. Topological charge. How does the theta term appear in the $\mathbb{C P}^{1}$ representation of the NLSM on S^{2} ? Show that

$$
\epsilon_{a b c} n^{a} d n^{b} \wedge d n^{c}=\alpha d A
$$

for some constant α, and find the number α.
3. Large- N saddle points in the $\mathbf{O}(N)$ model. [This problem is optional, since by now we've done a number of similar problems.] Consider the partition function for an N-vector of scalar fields in D dimensions

$$
Z=\int[D \phi] e^{\mathrm{i} S[\phi]}, \quad S[\vec{\phi}]=\int \mathrm{d}^{D} x\left(\frac{1}{2} \partial \phi^{a} \partial \phi^{a}-N V\left(\frac{\vec{\phi}^{2}}{N}\right)\right)
$$

with a general 2-derivative $O(N)$-invariant action. We're going to do this path integral by saddle point, which is a good idea at large N. As usual, the constant prefactors in Z drop out of physical ratios so you should ignore them.
(a) Change variables to the $O(N)$ singlet field $\zeta \equiv \vec{\phi}^{2} / N$ by inserting the identity

$$
1=\int[D \zeta] \delta\left[\zeta-\frac{\vec{\phi}^{2}}{N}\right]
$$

into the path integral representation for Z. Represent the functional delta function as

$$
\delta\left[\zeta-\frac{\vec{\phi}^{2}}{N}\right]=\int[D \sigma] e^{\mathbf{i} \int \mathrm{d}^{D} x \sigma\left(\vec{\phi}^{2}-\zeta N\right)} .
$$

Do the integral over ϕ^{a} to obtain

$$
Z=\int[D \zeta D \sigma] e^{\mathbf{i} N S_{\mathrm{eff}}[\zeta, \sigma]}
$$

Determine $S_{\text {eff }}[\zeta, \sigma]$.
(b) The integrals over ζ, σ have a well-peaked saddle point at large N. Obtain the coupled large- N saddle point equations for the saddle point configurations ζ_{0}, σ_{0}, and in particular the equation

$$
\zeta_{0}(x)=\left(\frac{\mathbf{i}}{-\square-2 V^{\prime}\left(\zeta_{0}\right)}\right)_{x x}
$$

(the subscript denotes a matrix element of the position-space operator).
(c) [more optional] Show that

$$
\frac{\delta}{\delta \sigma(x)} \operatorname{tr} \log (-\square+\sigma)=\left(\frac{1}{-\square+\sigma}\right)_{x x}
$$

by Taylor expansion.
(d) At large N, we know that

$$
\zeta_{0}(x) \stackrel{N \rightarrow \infty}{=}\left\langle\frac{\vec{\phi}^{2}(x)}{N}\right\rangle=\zeta_{0}, \text { constant. }
$$

Use this to show that the saddle point equation is the gap equation

$$
\zeta_{0}=\int \mathrm{a}^{D} k_{E} \frac{1}{k_{E}^{2}+2 V^{\prime}\left(\zeta_{0}\right)}
$$

which determines ζ_{0}, the expectation value of the order parameter $\left\langle\vec{\phi}^{2} / N\right\rangle$.
(e) What class of diagrams did you just sum?
(f) Compare and contrast the saddle point condition for $D=2$ and $D>2$. For $D>2$ you should find a critical value of the coupling.
Compare the behavior near the critical point with the large- n limit of the Wilson-Fisher fixed point in the ϵ expansion.
(g) Evaluate the two point function $\left\langle\phi^{a}(x) \phi^{a}(0)\right\rangle$ at the saddle point with $\zeta_{0} \neq 0$.

4. The Hohenberg-Mermin-Wagner-Coleman Fact.

(a) Consider a massless scalar X in 2d, with (Euclidean) action

$$
\begin{equation*}
S[X]=\frac{1}{4 \pi g} \int d^{2} \sigma \partial_{a} X \partial^{a} X \tag{1}
\end{equation*}
$$

Show that the euclidean propagator

$$
G_{2}\left(z, z^{\prime}\right) \equiv\left\langle X(z) X\left(z^{\prime}\right)\right\rangle
$$

satisfies

$$
\begin{equation*}
\nabla^{2} G_{2}\left(z, z^{\prime}\right)=b \delta^{2}\left(z-z^{\prime}\right) \tag{2}
\end{equation*}
$$

where $z=\sigma_{1}^{E}+\mathbf{i} \sigma_{2}^{E}$, for some constant b; find b. Show that the solution is given by

$$
G_{2}\left(z, z^{\prime}\right)=a \ln \left|z-z^{\prime}\right|,
$$

for some constant a (for example by Fourier transform); find a.
(b) The long-distance behavior of G_{2} has important implications for the spontaneous breaking of continuous symmetries in $D=2$ - it can't happen. Argue that if a system with a continuous (say $\mathrm{U}(1)$, for definiteness) symmetry were to have an unsymmetric groundstate, the excitations about that state would include a field X with the action (1). Conclude from the form of G_{2} that there is in fact no long-range order.

5. Correlators of composite operators made of free bosons in $\mathbf{1 + 1}$ dimensions.

Consider a collection of n two-dimensional free bosons X^{μ} governed by the (Euclidean) action

$$
S=\frac{1}{4 \pi g} \int d^{2} \sigma \partial_{a} X_{\mu} \partial^{a} X^{\mu}
$$

Until further notice, we will assume that X takes values on the real line.
[If $X \in \mathbb{R}$, the coupling g can be absorbed into the definition of X if we prefer, but it is useful to leave this coupling constant arbitrary for several reasons. First, different physicists use different conventions for the normalization and as you will see this affects the appearance of the final answer. But more importantly, in part $5 \mathrm{~d}, g$ will become meaningful.]
(a) Compute the Euclidean generating functional

$$
Z[J]=\left\langle e^{\int\left(d^{2} \sigma\right)_{E} J^{\mu} X_{\mu}}\right\rangle \equiv Z_{0}^{-1} \int[d X] e^{-S} e^{\int\left(d^{2} \sigma\right)_{E} J^{\mu} X_{\mu}}
$$

(where $Z_{0}^{-1} \equiv Z[J=0]$ but please don't worry too much about the normalization of the path integral).
[Hint: use the Green function from the previous problem, and Wick's theorem. Or use our general formula for Gaussian integrals with sources.]
[Warning: In the problem at hand, even the euclidean kinetic operator has a kernel, namely the zero-momentum mode. You will need to do this integral separately.]
[Cultural remark 1: this field theory describes the propagation of featureless strings in n-dimensional flat space \mathbb{R}^{n} - think of $X^{\mu}(\sigma)$ as the parametrizing the position in \mathbb{R}^{n} to which the point σ is mapped.
Cultural remark 2: this is an example of a conformal field theory. In particular recall that massless scalars in $D=2$ have engineering dimension zero.]
(b) Show that

$$
\begin{equation*}
\left\langle\prod_{i=1}^{N}: e^{-i \sqrt{2 \alpha^{\prime}} k_{i} \cdot X\left(\sigma^{(i)}\right)}:\right\rangle=\delta^{n}\left(\sum_{i} k_{i}^{\mu}\right) \prod_{i, j=1}^{N}\left|z_{i}-z_{j}\right|^{-\alpha^{\prime} g k_{i} \cdot k_{j}} \tag{3}
\end{equation*}
$$

where $\sigma^{(i)}$ label points in 2d Euclidean space, $z_{i} \equiv \sigma_{1}^{(i)}+i \sigma_{2}^{(i)}$, α^{\prime} is a parameter with dimensions of $\left[X^{2} / g\right]$ (called the 'Regge slope'), and k_{i}^{μ} are a set of arbitrary n-vectors in the target space. The : ... : indicate the following prescription for defining composite operators. The prescription is simply to leave out Wick contractions of objects within a pair of : ... :. Give a symmetry explanation of the delta function in k.
[Cultural remark: this calculation is the central ingredient in the Veneziano amplitude for scattering of bosonic strings at tree level.]
(c) Conclude that the composite operator $\mathcal{O}_{a} \equiv: e^{\mathrm{i} a X}$: has scaling dimension $\Delta_{a}=\frac{g a^{2}}{2}$, in the sense that

$$
\left\langle\mathcal{O}_{a}(z) \mathcal{O}_{b}^{\dagger}(0)\right\rangle=\delta(a-b) \frac{1}{|z|^{2 \Delta_{a}}}
$$

Notice that the correlation functions of these operators do not describe the propagation of particles in any sense. The operator \mathcal{O} produces some powerlaw excitation of the CFT soup.
(d) Suppose we have one field $(n=1) X$ which takes values on the circle, that is, we identify

$$
X \simeq X+2 \pi R
$$

What values of a label single-valued operators : $e^{\mathbf{i} a X}:$? How should we modify (3)?
6. Brain-warmer. Compute the expectation values of \mathbf{X} and \mathbf{Z} in the spin-coherent state $|\check{n}\rangle$.
7. Mean field theory is product states. Consider the transverse field Ising model on an arbitrary lattice:

$$
\mathbf{H}=-J\left(\sum_{\langle x, y\rangle} Z_{x} Z_{y}+g \sum_{x} X_{x}\right) .
$$

We will study the mean field state:

$$
\begin{equation*}
\left|\psi_{\mathrm{MF}}\right\rangle \equiv \otimes_{x}\left(\sum_{s_{x} \pm} \psi_{s_{x}}\left|s_{x}\right\rangle\right) \tag{4}
\end{equation*}
$$

Restrict to the case where the state of each spin is the same.
(a) Write the variational energy for the mean field state, $E(\hat{n}) \equiv\left\langle\psi_{\mathrm{MF}}\right| \mathbf{H}\left|\psi_{\mathrm{MF}}\right\rangle$.
(b) Assuming s_{x} is independent of x, minimize it for each value of the dimensionless parameter g. Find the groundstate magnetization $\langle\psi| Z_{x}|\psi\rangle$ in this approximation, as a function of g. Draw the mean-field phase diagram.

