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The conformal bootstrap is a highly powerful non-perturbative technique to study conformal
field theories (CFTs). This paper constitutes a brief introduction to the subject in D ≥ 3. After
a presentation of key notions of conformal field theories in D ≥ 3, we detail how the conformal
bootstrap can be used to constrain the scaling dimension of operators in a CFT. Impressive results
obtained in the 3D Ising CFT are presented, while a few other theories are also mentioned.

I. INTRODUCTION

Conformal field theories (CFTs) are a cornerstone
of modern theoretical physics. Indeed, these quan-
tum field theories (QFTs) invariant under the confor-
mal group (transformations preserving angles) play
an important role in various areas of physics. For
example, they describe critical points of continuous
phase transitions [1], fixed points of renormalization
group flows and also appear in quantum gravity via
the AdS/CFT correspondence [2].

However, most of the interesting CFTs are
strongly coupled theories that cannot be stud-
ied with the standard expansion in Feynman di-
agrams. The conformal bootstrap constitutes a
highly promising non-perturbative program to con-
strain and solve conformal field theories. This ap-
proach, which was originally proposed in the early
1970s [3, 4], has been very successful to solve
2D CFTs. However, during many decades, little
progress was made in the study of CFTs in D ≥ 3
until in 2008, where a set of new numerical tech-
niques was presented in [5], which allowed to ef-
ficiently apply the conformal bootstrap to higher-
dimension CFTs.

The goal of this paper is to give a short overview
of the modern conformal bootstrap in D ≥ 3. In
the first section, important notions of CFTs are re-
viewed, followed by a presentation of the main ideas
of the conformal bootstrap in section 2. Finally, im-
pressive results obtained in the last years are men-
tioned in section 3, while we conclude in section 4.

II. CONFORMAL FIELD THEORIES

We consider a spacetime in D dimensions with a
metric gµν . The conformal transformations are de-
fined as the set of operations on coordinates x →
x′ = x′(x) respecting g′µν(x′) = Ω(x)gµν . Note that
for the rest of the paper, we work in Euclidean signa-
ture, with gµν = δµν . There are four types of trans-
formations that respect this condition: Ω(x) = 1
corresponds to translations x′µ = xµ + aµ and rota-
tions x′µ = Λµ νx

ν . The case Ω(x) ̸= 1 corresponds

to the dilatation x′µ = λxµ (λ ∈ R). Finally, special
conformal transformations (SCTs)

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
, (1)

have a local Ω(x). The four transformations pre-
sented above, generated respectively by the opera-
tors Pµ, Mµν , D and Kµ, constitute the conformal
group. Appendix A presents the differential oper-
ator representation of the generators as well as the
conformal algebra.

The first step to study CFTs is to find how field
operators Oa(x) transform under conformal trans-
formations. The analysis is done in Appendix B and
reveals crucial points. First, from the action of D
and Mµν at the origin

[D,Oa(0)] = i∆Oa(0)
[Mµν ,Oa(0)] = i(Sµν)

a
bOb(0) ,

(2)

we learn that operators in a CFT are labeled by their
scaling dimension ∆ and their spin l (the rank of
the SO(D) representation under which Oa(x) trans-
forms). Secondly, Pµ and Kµ are respectively rais-
ing and lowering operators: they generate operators
with an increased/decreased scaling dimension by 1.
Finally, the spectrum of a CFT is composed of two
types of operators: primaries, which are annihilated
by SCTs at the origin and descendants, generated
by acting with Pµ’s on primaries. A primary and its
descendants form a conformal family, an irreducible
representation of the conformal group.

One of the major consequences of conformal in-
variance is that it imposes strong constraints on cor-
relation functions. For example, it can easily be
shown that the 2-point function of two real scalar
operators of scaling dimension ∆1 and ∆2 is

⟨ϕ1(x1)ϕ2(x2)⟩ =
δ∆1∆2

|x1 − x2|2∆1
(3)

while the 3-point function of three scalars is
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⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩

=
λ123

|x12|∆−2∆3 |x23|∆−2∆2 |x31|∆−2∆1
,

(4)

where xij = xi−xj and ∆ =
∑3
i=1 ∆i, while λ123 is

a numerical coefficient which depends on the three
operators. General expressions for 2 and 3-point
functions of operators with spins, involving confor-
mally invariant tensor structures, are presented in
[6]. Note that the great simplicity of the correla-
tion function’s structure stops at three points. In-
deed, when dealing with four spacetime points, the
following crossing-ratios are invariant under all four
conformal transformations

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (5)

Hence, for four identical scalars O of dimension ∆,
the 4-point function is

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
G(u, v)

|x12|2∆|x34|2∆
, (6)

where G(u, v) is a function of u and v. We will see in
the next section that 4-point functions play a crucial
role in the conformal bootstrap.

Next, we mention a few words on one of the most
important tool to study correlators in CFTs: the
operator product expansion, which states that the
product of two operators Oai (x1) and Obj(x2) (i, j
labels the operator, while a, b are the spin indices)
can be expressed as

Oai (x1)Obj(x2) =
∑
k

fijk C
abc(x12, ∂2)Ock(x2) , (7)

where the sum is performed over the primaries in the
CFT. The differential operator Cabcijk (x12, ∂2), which
is entirely constrained by conformal invariance, gen-
erates descendants in the series. The numbers fijk,
which are called OPE coefficients, can be related
with the coefficient(s) of the 3-point function λijk
by multiplying both sides of the OPE by an oper-
ator appearing on the right-hand side and by tak-
ing the expectation value on both sides. The OPE
can be derived in radial quantization by inserting
two operators inside a sphere and then by using the
state-operator correspondence. These two notions
are presented in Appendix C. Note that in a CFT,
the OPE has a finite radius of convergence as long
as no other operators are inserted between x1 and
x2 [7].

The OPE is extremely powerful. Indeed, it can be
used to express any n-point correlation function as a
series of (n−1)-point functions of other operators in
the CFT. Therefore, by applying the OPE multiple
times, any correlation function can be reduced to a
sum of simple 2-point functions.

Let’s now go back to the evaluation of the 4-point
function (Eq. 6). Note that we will stick with four
identical scalars for simplicity. The OPE can then be
applied to the product ϕ(x1)ϕ(x2) and ϕ(x3)ϕ(x4),
which yields

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩

=
1

|x12|2∆|x34|2∆
∑
O
f2ϕϕO g∆O,lO (u, v) ,

(8)

where we have used a basis of operators in which
the 2-point function is diagonal and the sum is per-
formed over primary operators. Moreover, the fol-
lowing quantity has been defined

g∆O,lO (u, v) = |x12|2∆|x34|2∆

× Ca(x12, ∂2)C
b(x34, ∂4) ⟨Oa(x2)Ob(x4)⟩ ,

(9)

called a conformal block, which is only a function of
u and v. A given conformal block encodes the pres-
ence of a single conformal family in the expansion
of the 4-point function and is thus labeled by the
scaling dimension and the spin of the primary. Note
that conformal blocks can be computed for any theo-
ries using a procedure relying only on the conformal
algebra, which is presented in [8].

III. THE CONFORMAL BOOSTRAP

Since any n-point correlator can be reduced to a
series of 2-point functions with the OPE, we see that
any CFT is entirely described by the scaling dimen-
sion and the spin of its primary operators and the
OPE coefficients (up to some additional coefficients
such as the central charge, the normalization of the
energy-momentum tensor 2-point function). The
knowledge of all these numbers, called the CFT data,
allows to compute any correlation function. How-
ever, not every set of number represents a consistent
CFT. Indeed, for a CFT to be well-defined, the ap-
plication of the OPE in the 4-point function must be
associative: applying the OPE on ϕ(x1)ϕ(x2) and
ϕ(x3)ϕ(x4) must yield the same result as applying
the OPE for ϕ(x1)ϕ(x4) and ϕ(x2)ϕ(x3), which is
equivalent to the swap x1 ↔ x3. Therefore, the func-
tion G(u, v) appearing in the 4-point function must
respect the crossing symmetry G(u, v) = u∆

v∆G(v, u),
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which can be rewritten in terms of the conformal
blocks as

∑
O
f2ϕϕOF

∆
∆OlO (u, v) = 0 , (10)

which is called the conformal bootstrap equation,
where we have defined

F∆
∆OlO = v∆g∆OlO (u, v)− u∆g∆OlO (v, u) . (11)

Eq. (10) is a strong constraint on the CFT, since
it must be verified for any CFT data and any four
spacetime points. The goal of the modern conformal
bootstrap is to use this equation to establish con-
straints on the CFT data for physically interesting
operators.

Before discussing about the bootstrap algorithm,
it is important to assume the unitarity of the theory
(which is often the case for physically interesting the-
ories). This has two important effects on the CFT
data: it puts lower bounds on the scaling dimensions
and it ensures that OPE coefficients are real. More
details are presented in Appendix D. The latter is
particularly powerful, since it forces f2ϕϕO ≥ 0. In
this case, it is useful to treat F∆

∆OlO
(u, v) as a vector,

labeled by ∆O and lO, in an infinite-dimensional vec-
tor space of functions of (u, v). The conformal boot-
strap equation can thus be seen as a linear combi-
nation of vectors with positive coefficients that must
add to 0.

Knowing this, let’s detail the strategy of the nu-
merical conformal bootstrap to put constraints on
scaling dimensions:

1. We first assume a CFT spectrum (set of ∆ and
l) respecting the lower bounds established by
unitarity.

2. We then look for a linear functional α act-
ing on the vectors F∆

∆OlO
(u, v), which must

respect α[F∆
00(u, v)] > 0 for the identity op-

erator (since 1 has ∆ = 1 and l = 0) and
α[F∆

∆OlO
(u, v)] ≥ 0 for all the other operators

in the spectrum.

3. If such an α exists, then applying it on both
sides of the bootstrap equation leads to a con-
tradiction. This means that the spectrum ini-
tially assumed is not consistent and can be
discarded. If no α is found, nothing can be
concluded.

Since the vectors F∆
∆OlO

(u, v) are infinite-
dimensional, it is of course impossible to find a
functional for the entire vector-space. However, the

search for α can be restricted to finite-dimensional
subspaces and if a functional is found in this case,
the assumed spectrum can still be discarded. More
details on this subject can be found in [9]. Note
that a similar algorithm exists to put bounds on the
OPE coefficients.

Finally, stronger constraints can be put on CFT
spectra by adding inputs from known theories. For
example, we can restrict ourselves to theories with a
certain symmetry, certain types of operators that are
known to appear, etc. This will play an important
role in the next section.

IV. RESULTS

We now mention some interesting results obtained
with the conformal bootstrap in D = 3. Let’s start
by illustrating the most spectacular results, pre-
sented in [10, 11]. In these papers, the authors con-
sidered a CFT with a Z2 symmetry which has two
operators of low scaling dimensions: a pseudoscalar
σ (odd under Z2) and a scalar ϵ. By applying the
conformal bootstrap algorithm presented in the pre-
vious section to the 4-point function ⟨σσσσ⟩, it was
possible to put an upper-bound on the scaling di-
mension ∆ϵ in terms of ∆σ. The exclusion plot is
shown below

Ising
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Figure 3: Shaded: the part of the (∆σ,∆ε) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each ∆σ in this range, we ask: What is the maximal ∆ε allowed by (5.3)?

The result is plotted in Fig. 3: only the points (∆σ,∆ε) in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the ∆σ and ∆ε error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the ∆σ and ∆ε error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5 ≤ ∆ε ≤ 1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].

12

Figure 1: Exclusion plot for the scaling dimension
of the smallest scalar ϵ in terms of the scaling
dimension of the smallest pseudoscalar σ. The

white region above the curve is ruled-out by the
conformal bootstrap. Plot taken from [10].

The white region above the blue curve is ruled-out
by the conformal bootstrap, while the blue region
corresponds to allowed sets (∆σ,∆ϵ) of scaling di-
mensions. The most interesting feature of this fig-
ure is the kink, which occurs near the scaling dimen-
sions of a famous CFT: the 3D Ising critical point.
Therefore, it seems that this CFT saturates the up-
per bound.
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To obtain stronger constraints on the Ising CFT,
it is necessary to add additional information to the
bootstrap analysis. This was performed in [11],
where the authors have established crossing relations
for the two additional 4-point functions ⟨σσϵϵ⟩ and
⟨ϵϵϵϵ⟩. Furthermore, by requiring that σ and ϵ are
the only two relevant operators (∆ < 3) in the CFT,
the impressive exclusion plot presented in Figure 2
has been obtained.
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Figure 1. Determination of the leading scaling dimensions in the 3d Ising model from the mixed

correlator bootstrap after scanning over the ratio of OPE coefficients λεεε/λσσε and projecting to the

(∆σ,∆ε) plane (blue region). Here we assume that σ and ε are the only relevant Z2-odd and Z2-even

scalars, respectively. In this plot we compare to the previous best Monte Carlo determinations [17]

(dashed rectangle). This region is computed at Λ = 43.

Compared to previous mixed-correlator studies [5, 6, 9] (see also [12–14]), the nov-

elty of the present work is the idea of disallowing degeneracies in the CFT spectrum

by making exclusion plots in the space of OPE coefficients and dimensions simultane-

ously. For example, in the 3d Ising model, by scanning over possible values of the ra-

tio λεεε/λσσε, we can impose that there is a unique ε operator. This leads to a three-

dimensional island in (∆σ,∆ε, λεεε/λσσε) space whose projection to the (∆σ,∆ε) plane is

much smaller than the island obtained without doing the scan. For each point in this

island, we also bound the OPE coefficient magnitude λσσε. The result is a new determi-

nation of the leading scaling dimensions (∆σ,∆ε) =
(
0.5181489(10), 1.412625(10)

)
, shown

in figure 1, as well as precise determinations of the leading OPE coefficients (λσσε, λεεε) =(
1.0518537(41), 1.532435(19)

)
. These scaling dimensions translate to the critical exponents

(η, ν) =
(
0.0362978(20), 0.629971(4)

)
.

We repeat this procedure for 3d CFTs with O(2) and O(3) global symmetry, focus-

ing on the bootstrap constraints from the correlators {〈φφφφ〉, 〈φφss〉, 〈ssss〉} containing

the leading vector φi and singlet s. We again find that scanning over the ratio of OPE

coefficients λsss/λφφs leads to a reduction in the size of the islands corresponding to the

O(2) and O(3) vector models. The results are summarized in figure 2. In studying the

O(2) model, we are partially motivated by the present ∼ 8σ discrepancy between measure-

ments of the heat-capacity critical exponent α in 4He performed aboard the space shuttle

– 2 –

Figure 2: Allowed values of the scaling dimensions
(∆σ,∆ϵ) in the 3D Ising CFT, compared with the
most precise Monte Carlo results. Plot taken from

[11].

Therefore, having added additional information to
the bootstrap analysis has constrained the Ising
CFT to a tiny island in the (∆σ,∆ϵ) space. This
leads to the most precise values of the scaling di-
mensions ever computed [11]

∆σ = 0.5181489(10) ,

∆ϵ = 1.412625(10) .
(12)

The conformal boostrap has also been applied to
a generalization of the Ising CFT in D = 3 with N
real scalar fields, called the O(N) model. Scaling di-
mensions and OPE coefficients are obtained for small
N > 1 in [11], improving upon results obtained with
quantum Monte Carlo simulations, the ϵ-expansion
and the 1/N expansion.

Finally, the conformal bootstrap has also been ap-
plied to fermionic CFTs [12, 13]. In D = 3, the

strongly interacting fixed point of the Gross-Neveu-
Yukawa model is an interesting example

L =− 1

2
ψ̄i(/∂ + gϕ)ψi −

1

2
∂µϕ∂

µϕ

− 1

2
m2ϕ2 − λϕ4 ,

(13)

where i labels the N flavors of (real) Majorana
fermions ψi, while ϕ is a parity-odd scalar. Scal-
ing dimensions of the smallest operators have been
computed in [13] for various N . For example, for
N = 2, it was found that

∆ψ = 1.067 , ∆σ = 0.660 , ∆σ2 = 2.14 . (14)

V. CONCLUSION

The conformal bootstrap is a particularly power-
ful method to constrain and solve conformal field
theories. It is a highly general approach, since it
does not require a Lagrangian description or a UV
version of the theory. It only relies on conformal
invariance, unitarity, crossing relations and some in-
puts from CFTs of interest. This paper served as a
brief overview of the conformal bootstrap in D ≥ 3.
We started by introducing some essential notions of
conformal field theories. We then presented the pro-
gram of the conformal bootstrap and an example of
algorithm to constrain the scaling dimension of op-
erators. The last section was dedicated to a review
of some interesting results obtained during the last
years.

Although the conformal bootstrap is an extremely
promising avenue that has led to various impressive
outcomes, there are still plenty of open questions
that are yet to be answered. As an example, few
results have been obtained for critical gauge theories
[14].
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Appendix B: Action of generators on field operators

To study CFTs, we need to know how field operators transform under the conformal group. To do so, it is
sufficient to determine the action of the generators on the fields. The procedure (presented notably in [16]),
is to start with the operator O(0) (spin indices implicit) at the origin, to translate it at position x with the
Heisenberg equation

O(x) = e− iP ·xO(0) eiP ·x , (B1)

and to finally compute the commutator [G,O(x)] (where G is any of the generators). In an irreducible
representation of SO(D), the result for the first three generators is

[Pµ,O(x)] = i ∂µO(x) ,
[D,O(x)] = i(∆ + xµ∂µ)O(x) ,

[Mµν ,O(x)] = i(Sµν − xµ∂ν + xν∂µ)O(x) ,
(B2)

where Sµν are SO(D) matrices acting on the spin indices of O: SµνO(x) = (Sµν)
a
bOb(x). The rank l of

the representation of SO(D) is the spin. Moreover, ∆ is a real number called the scaling dimension of the
operator. Since D and Mµν commute, we see that operators in a CFT are labeled by ∆ and l.

Next, using the conformal algebra and the action of D on O(0), we see that [17]

[D, [Pµ,O(0)]] = i∆PµO(0) + iPµO(0)− iO(0)Pµ − i ∆O(0)Pµ = i(∆ + 1)[Pµ,O(0)]
[D, [Kµ,O(0)]] = i∆KµO(0)− iKµO(0) + iO(0)Kµ − i ∆O(0)Kµ = i(∆− 1)[Kµ,O(0)] .

(B3)

This shows that the action of Pµ/Kµ is to raise/lower the scaling dimension by 1. In fact, we see directly
from the conformal algebra that Pµ and Kµ act respectively as a raising/lowering operator.

In fact, in a unitary CFT, scaling dimensions are non-negative and bounded from below. Therefore, Kµ

can only act a finite number of times before yielding 0. Operators that are annihilated at the origin by
special conformal transformations are called primary operators, which respect

[Kµ,O(0)] = 0 . (B4)

Primary operators constitute building blocks of the operator spectrum of a CFT. Indeed, given a primary of
dimension ∆, operators of higher scaling dimension can be generated by acting with Pµ an arbitrary number
of times. These operators are called descendants and they form with their primary a conformal family. It
turns out that every operator in a CFT is either a primary or a descendant.

Knowing this, it can be shown that the action of Kµ on the primary O(x) is

[Kµ,O(x)] = i(2∆xµ + 2xµx
ν∂ν − x2∂µ − 2xνSµν)O(x) . (B5)

Appendix C: Radial quantization and state-operator correspondence

This appendix presents an alternative way to define CFTs in terms of quantum states [18]. In general
QFT (not conformal) invariant under time translation, it is natural to divide spacetime in slices of equal
time and to evolve quantum states along the time direction with the Hamiltonian H = P 0. In this case,
entering states |in⟩ can be generated by acting with creation operators in the past, while outgoing states
|out⟩ are generated in the future.

However, because of their scale invariance, it is more natural to foliate spacetime for CFTs in terms of
hyperspheres of D−1 dimensions. The evolution of quantum states is then along the radial direction. In this
case, incoming/outgoing states are generated by acting with creation operators inside/outside a hypersphere.
This is called the radial quantization. Moreover, scale invariance implies that the Hilbert space is the same
on every hypersphere. Therefore, we define quantum states living on these surfaces as |∆, l⟩a, such that
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D |∆, l⟩a = i∆ |∆, l⟩a , Mµν |∆, l⟩a = i(Sµν)ab |∆, l⟩b . (C1)

Like the operators in a CFT, the quantum states living on hyperspheres are also labeled by ∆ (eigenvalue
of D) and an SO(D) representation. To understand this, let’s build the Hilbert space of the theory. The
vacuum state is defined as being annihilated by the four generators of the conformal group

Pµ|0⟩ = D|0⟩ = Lµν |0⟩ = Kµ|0⟩ = 0 . (C2)

Let’s now insert a primary scalar (for simplicity) of scaling dimension ∆ at the origin, which corresponds to
the state |O⟩ = O(0) |0⟩. Acting with D, we get

DO(0) |0⟩ = [D,O(0)]|0⟩+O(0)D|0⟩ = i∆O(0) |0⟩ . (C3)

Since this state is an eigenstate of D with a scaling dimension ∆, we see that |O⟩ = |∆, l = 0⟩. On the other
hand, acting with Kµ yields

Kµ |O⟩ = [Kµ,O(0)] |0⟩+O(0)Kµ |0⟩ = 0 , (C4)

which shows that the state generated by the primary O is annihilate by the SCTs at the origin. We then
see a clear relation between primary operators and the states that they generate. In fact, we can write
schematically [19]

[D,Oa(0)] = i∆Oa(0) ←→ D|∆, l⟩a = i∆ |∆, l⟩a ,
[Mµν ,Oa(0)] = i(Sµν)

a
bOb(0) ←→ Mµν |∆, l⟩a = i(Sµν)

a
b |∆, l⟩b ,

[Kµ,Oa(0)] = 0 ←→ Kµ|∆, l⟩a = 0 ,

(C5)

which is called the state-operator correspondence: there is a one-to-one mapping between field operators in
a CFT and states that they generated in radial quantization.

Appendix D: Unitarity consequences

In a unitary CFT, states obtained in radial quantization have a positive-definite norm. With this condition,
one can show that this puts lower bounds on the scaling dimension of operators in the CFT spectrum. For
example, three important bounds are

∆ ≥


D−2
2 for l = 0,

D−1
2 for smallest spinor,

l + d− 2 for l ≥ 1, traceless symmetric tensor .
(D1)

Moreover, in a unitary CFT, we are free to choose a basis in which all the operators are real. This implies
that all the OPE coefficients are also real. See [9] for more details.
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