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Following the notes of Witten [2] we introduce the construction of relative entropy and entangle-
ment as a property of the algebra of observables on the full continuum field theory Hilbert space.
We exhibit the connection to the more familiar quantum information concepts in the nonrelativistic
finite-dimensional case, and discuss the bridge from this case to the continuum.

INTRODUCTION

If one is not sufficiently frustrated with the many tra-
ditional complications of quantum field theory in the con-
tinuum, let them turn their attention to the issue of pin-
ning down the familiar notions of entanglement and en-
tropy in this setting. Like with any interesting quantum
system, we can ask questions about the information avail-
able to us when we act with local operators in different
corners of the Hilbert space. Unsurprisingly, we run into
nasty issues in the continuum limit: the entanglement
entropy between any two regions of spacetime picks up
a UV divergence. Nevertheless, we can learn valuable
lessons about the underlying structure of this entropy by
retreating to the case of finite-dimensional systems, and
then carefully constructing a bridge to the continuum
case.

I: BREAKING DOWN THE QFT HILBERT
SPACE

Before we address the notion of entropy, we need some
preliminary understanding of the relationship between
our field theory Hilbert space H and the algebra of op-
erators which act on it. If we take H to be the space
generated by those states |Ψ〉 obtained by acting with

local operators φ̂f ≡
∫
dDxf(x)φ̂(x) on the vacuum:

|Ψ〉 = φf1φf2 . . . φfn |Ω〉 , then we can ask the question:
what is the minimal amount of information needed to
construct this space?

In classical mechanics we have an answer: if we estab-
lish our initial conditions on the spacetime hypersurface
defined by t = 0, then the behavior of the system is
completely defined on all of spacetime. Indeed, the same
is true for field theory: defining some hypersurface Σ
(take for example the surfaced defined by t = 0), then if
we require that our field operators are localized in any
neighborhood of Σ, the set of resulting states is enough
to generate H [2].

But the surprising result summarized in the Reeh-
Schlieder Theorem is that this is actually overkill: we
do not need the whole t = 0 hypersurface. In fact we
only need the fields which are localized in some arbitrar-
ily small open subset of it. The set of states obtained by
acting with these local fields on the vacuum are enough

to generate all of H! In cruder words: I can generate a
state containing the Andromeda galaxy by acting with
field operators localized only on the tip of my big toe,
even if these regions are spacelike-separated.

The precise statement and interpretation of the Reeh-
Schlieder theorem is discussed in Appendix A. But here
is a core lesson of the theorem which we will carry for-
ward: all we need to generate all ofH is the vacuum state
|Ω〉 and the algebra of operators AU localized to some ar-
bitrarily small region of spacetime U . Importantly, this
shows that every region of spacetime is highly entangled
with every other region of spacetime.

Given any local algebra of operators A, a state such
as |Ω〉 which A acts on to generate H is called a cyclic
state for A. In fact there are many such states, and we
will use them to construct our concept of entropy.

II: SIMPLIFICATION - ENTANGLEMENT IN
FINITE DIMENSIONAL SYSTEMS

Before diving into the full complexity of entanglement
and entropy in the continuum field theory case, let us get
a taste for what to expect in a much more comfortable
setting: a finite dimensional quantum system with a fac-
torable Hilbert space H = H1 ⊗ H2. We let A1 be the
algebra of operators acting on H1, and A2 those acting
on H2. If we define an orthogonal basis ψk for H1 and φk
for H2 then a generic state Ψ of this Hilbert space can
be expressed as: Ψ =

∑
k ckψk ⊗ φk.

It turns out that if these bases are orthonormal then
Ψ is cyclic for A1 and A2 [2]. Moreover, in the case
where the dimensions of the spaces are equal, then any
generic state Ψ has an expansion of this form where all ck
coefficients are nonvanishing, and equivalently is a cyclic
state.

Here we see our first clear brush with entanglement: a
state for which all coefficients in this expansion are non-
vanishing can be thought of as ”maximally entangled”.
Thus, the cyclic states for these algebras are precisely
those which are maximally entangled. But wait there’s
more!

If we represent this state with a density matrix ρ =
|Ψ〉 〈Ψ| and take traces over each of the subspaces re-
spectively, we get reduced density matrices ρ1 = tr2ρ
and ρ2 = tr1ρ. Then ρ1, ρ2 are invertible if and only if
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all coefficients ck are nonvanishing, which is the case if
and only if Ψ is cyclic. Why do we care about invertibil-
ity? Well if we have two states Ψ,Φ where Ψ is cyclic,
and where σ1, σ2 are the reduced density matrices for Φ,
then let us define the relative modular operator :

∆Ψ|Φ = σ1 ⊗ ρ−1
2

Finally this allows us to define the relative entropy be-
tween the states Ψ and Φ:

SΨ|Φ = −〈Ψ| log ∆Ψ|Φ |Ψ〉 = trρ1(log ρ1 − log σ1)

We recognize this as the usual definition of relative
entropy for two entangled states of a quantum system!
With such a tool in hand, we can tackle all sorts of
questions regarding the entropy and mutual informa-
tion between various states of our space, when measur-
ing with an operator localized to only a small subspace.
For those not familiar with the concept of quantum en-
tropy and mutual information, a summary is provided
in Appendix B. A demonstration of this power is the
ability to prove monotonicity of relative entropy [2]: we
lose information by tracing out subregions of Hilbert
space: S(ρAB ||σAB) ≥ S(ρA||σA) where ρA = trBρAB
and σB = trBσAB

What have we learned? If we can factor the Hilbert
space then we get clear criteria for cyclic states, which
allows us to define the relative entropy between two
states for measurements in a given subregion. We ac-
complish this by ”tracing out” the degrees of freedom
in the other factorized regions. This gives us all sorts
of leverage for analyzing information and entanglement
entropy amongst our states.

III: ENTROPY OF ENTANGLEMENT FOR QFT

We now take inspiration from the definition in the
finite-dimensional case, and attempt to formulate a sim-
ilar concept of relative entropy in our full QFT Hilbert
space. The ”subregion” of the Hilbert space we are in-
terested in is that associated with some open region U of
Minkowski space. If we let A be the algebra of observ-
ables localized in U , then given any cyclic state Ψ for A
, and any other state Φ, then we can define the relative
Tomita operator for Ψ as: SΨ|Φâ |Ψ〉 = â† |Φ〉 for â ∈ A.
The requirement for Ψ to be cyclic is necessary for this
operator to be well-defined [2].

Then, in analogy with our previous construction, we
define the relative modular operator : ∆Ψ|Φ ≡ S†Ψ|ΦSΨ|Φ.

This allows us to define the relative entropy between our
states on the spacetime region U :

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ |Ψ〉

Is this the definition of relative entropy we are look-
ing for? It has some encouraging properties: if Φ = aΨ
where a is a unitary element of the algebra which com-
mutes with A, then SΨ|Φ(U) = 0 [2]. This shows that
under such a unitary transformation then Ψ can not be
distinguished from Φ by measurements in U , which we
expect on physical grounds. More promising is the mono-
tonicity of relative entropy in this case: if Ũ ⊂ U then
S(Ũ) ≤ S(U) [2]. But, most reassuringly: this construc-
tion agrees with the finite-dimensional case (or rather
they agree in the limit), which as we saw in the previous
section gives the usual definition for relative entropy.

IV: COMPARISON AND INTERPRETATIONS

Let us reconcile the lessons we have learned in the con-
tinuum and finite cases, and attempt to make some in-
terpretations. The Reeh-Schlieder theorem tells us that
the vacuum |Ω〉 is a cyclic state for the algebra of opera-
tors AU over any open region U of Minkowski space, no
matter how small.

In the finite-dimensional case the existence of such a
cyclic state |Ψ〉 would imply a factorization of the Hilbert
space H = H1 ⊗ H2 with the local algebra of operators
over each factor acting on Ψ, which we interpret to be
a ”maximally entangled state”. This allows us to define
relative entropy by tracing out the degrees of freedom in
one of the factors.

This begs us to conjecture that in the QFT case we
should be able to factor our Hilbert space by spacetime
region: H = HU ⊗HŪ , where Ū is the complement of U ,
so that |Ω〉 is the ”maximally entangled” cyclic state for
the associated local operator algebras AU , AŪ .

Sadly this is not to be. If this were achievable, then we
could pick any states ψ ∈ HU and ψ′ ∈ HŪ , to form the
unentangled ”separable” state ψ ⊗ ψ′. This state would
yield no entanglement between observables in U and Ū .

But this is not how quantum field theory works, in fact
the reality is much worse. In field theory there exists an
ultraviolet divergence in the entanglement entropy be-
tween any two adjacent regions of spacetime [2]. This
UV divergence is universal in the sense that it exists re-
gardless of the states considered: it is not a property of
the states but of the algebra of observables. It is com-
mutative with the fact that the Hilbert space can not be
factored into subregions H = HU ⊗HŪ .

We contrast this with the case in finite dimensions of a
factorable Hilbert spaceH = H1⊗H2. Our ability in this
case to ”trace out” the degrees of freedom in one of the
factors allows us to define the the entanglement entropy
of any state S(ρ) = trρ1 log ρ1 where ρ1 = tr2ρ. There
is no such analog in continuum quantum field theory.
However as we have seen we can still manage to define
relative entropy in this case. This is a powerful enough
tool to find many applications.
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A caveat to the above is that: if our field theory is
regularized (say on a lattice), then even if the Hilbert
space does not factorize we can still form a meaningful
definition of the entropy of a state [1]. However this def-
inition will not have the usual interpretation of ”tracing
out” degrees of freedom.

We leave a brief discussion of the connection between
the finite-dimensional and continuum case to Appendix
C. The bridge between these cases is given in the form
of treating the continuum Hilbert space as the limit of
finite-dimensional matrix spaces in increasing dimension,
so that the QFT Hilbert space has the interpretation of
arising as infinitely many qubits entangled together. This
is sufficient to show not only the UV divergence in the
entanglement entropy, but also its universality amongst
states.

APPENDIX A: THE REEH SCHLIEDER
THEOREM AND IMPLICATIONS

We now give a brief statement and discussion of the
Reeh-Schlieder theorem as presented in [2].

Suppose we define our Hilbert space H0 as the space
generated by states of the form φf1φf2 . . . φfn |Ω〉, where
Ω is the vacuum and where φf =

∫
dDxf(x)φ(x) for some

smooth function f . The reason for the subscript on H0 is
because this is the so-called vacuum sector of our Hilbert
space, and is typically only actually a subspace of the
full Hilbert space H of our field theory that we are inter-
ested in. The other sectors are often defined by conserved
quantities like charge in QED, and can not be reached by
acting on |Ω〉 with field operators which do not carry this
conserved quantity. However we restrict our attention to
H0 because the results we show can be applied to any
other such sector.

Define some spacelike hypersurface Σ (the example to
keep in mind is Σ = {(t, x) : t = 0}). Then choose any
arbitrarily small open subset V ⊂ Σ, and likewise choose
any correspondingly small neighborhood U of V in the
full Minkowski space.

The Reeh-Schlieder theorem states that if we restrict
our functions f1, . . . , fn to be supported in U , then the
states of the form |Ψ〉 = φf1 . . . φfn |Ω〉 are sufficient to
generate all of H0

At first this may trigger some deeply-ingrained alarms
about causality: how can we effectively construct states
containing complex structures, entire universes (in Wit-
ten’s case, a moon) in a spacelike-separated region by
acting on the vacuum only with very localized operators?
The quick resolution is this: the Reeh-Schlieder theorem
does not say that there exists unitary operators which
acts on the vacuum to yield these states, just that some
operator exists.

The realization that most such states are nonphysical,
only mathematical elements of the Hilbert space, and not

realizable by physical time evolution should be a com-
fort. The only way to perform any physical change to
the system is by coupling our Hamiltonian and acting
with unitary operators.

Therefore, it is still not possible for physical operators
in one region to affect a measurement in a spacelike sep-
arated region. However, there can still be correlations
between operators in these two regions. This is the real
meat of what the Reeh-Schlider Theorem shows: that
the state |Ω〉 is cyclic for the algebra of observables AU
of any open spacetime region U , and therefore there is an
extreme level of entanglement amongst observables in all
regions of spacetime.

The same result applies in the other superselection sec-
tors of H, except it is not the vacuum acting as the cyclic
state but some other guaranteed vector in the space.

APPENDIX B: QUANTUM RELATIVE
ENTROPY AND MUTUAL INFORMATION

We now give a rough and informal review of some of
the key concepts of quantum information such as von
Neumann entropy and mutual information.

Shannon defined that, classically, the information con-
tent of an outcome X which occurs with probability p(X)
is given by − log p(X). In this way, if p(X) = 1 then no
information is gained, and as p(X) → 0 the amount of
information we gain from such an outcome diverges.

Then the average information gained from a random
variable X which takes values in D, with probability dis-
tribution p : D→ [0, 1] is:

E(− log p(X)) = −
∑
x∈D

p(x) log p(x)

This is the entropy of the random variable.
If we wish for a way to measure the ”distinguishability”

of some proposed distribution Q = {q1, . . . , qn} from the
true distribution of a system, P = {p1, . . . , pn}, then we
can use the relative entropy :

D(P |Q) =
∑
i

(
pi log pi − pi log qi

)
All of these concepts have analogs in quantum mechan-

ics. If we are handed some ensemble of states represented
by a density matrix ρ, then the analog of the classical en-
tropy of a distribution is the von Neumann entropy of ρ:

S(ρ) = −trρ log ρ

Likewise, the quantum relative entropy of two states
ρ, σ measures their distinguishability:
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S(ρ|σ) = trρ(log ρ− log σ)

Relative entropy can be used to determine ”how en-
tangled” a state ρ is if we are working on a factorized
Hilbert space, by measuring its optimal relative entropy
to unentangled ”separable” states. This is defined as the
relative entropy of entanglement :

D(ρ) = min
σ
S(ρ|σ)

where the minimum is taken over all separable states
σ on our factorized Hilbert space.

Finally, if we are working with a single state ρ on a
factorized Hilbert space H = H1 ⊗H2, then we can ask
about the degree of entanglement of ρ between the two
subsystems. This is achieved first by tracing out the
state in each of the subspaces: ρ1 = tr2ρ, ρ2 = tr1ρ.
Then we define the mutual information as a measure of
the correlation between the subspaces in this state:

I(ρ1, ρ2) = S(ρ|ρ1 ⊗ ρ2)

Roughly, this quantifies the amount of information
learned about one subsystem by observing the other.

By constructing a concept of relative entropy in quan-
tum field theory, as well as in finite-dimensional systems,
all of these quantities are available to us.

APPENDIX C: QFT ALGEBRAS BUILT FROM
FINITE-DIMENSIONAL SYSTEMS

We give a rough summary of the characterization of lo-
cal algebras AU of QFT operators on spacetime regions,
as presented in [2], and observe how a universal UV di-
vergence is built directly into the resulting algebra itself.
The presentation here lacks nearly all of the mathemat-
ical details and we refer the reader to the original paper
to fill these in.

We say that a von Neumann algebraA of type I can act
irreducibly on a Hilbert space H by bounded operators.
In particular, if H has dimension n then the operators
are clearly bounded and the algebra is said to be of type
In. These algebras act on n-dim vector spaces V .

If we now take many copies of algebras of type I2 and
call them M2, and pick out states:

K2,λ =
1√

1 + λ

(
1 0

0
√
λ

)
for λ ∈ (0, 1), then these states represent entangled

qubit systems which are not maximally entangled.

Given a sequence λ1, λ2, . . . then we can construct the
space of vectors:

v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ · · · ∈ V 1 ⊗ V 2 ⊗ . . .

such that vi = K2,λi
for all but finitely many i. This

forms a countably-infinite-dimensional vector space. To
see the specific details of how this is constructed into a
Hilbert space is in [2]. We then take the elements of our
algebra of operators to be the states:

a1 ⊗ a2 ⊗ · · · ∈M (1)
2 ⊗M (2)

2 ⊗ . . .

where ai = K2,λi for all but finitely-many i. To fully
make this an algebra we must also take it’s closure under
limits of bounded operators acting on the vector space,
which is another pesky detail we refer to [2].

If the sequence λ1, λ2, . . . converges to some λ ∈ (0, 1)
then the algebra A constructed from these operators is
said to be of type IIIλ. The state:

Ψλ = K2,λ1
⊗K2,λ2

⊗ . . .

is cyclic for this algebra and its complement.
The local operator algebra AU for a spacetime region
U in quantum field theory is of type III1 [2], so the de-
grees of freedom in U can be thought of as arising from
an infinite number of entangled qubits whose levels of
entanglement increase in the limit.

One can then clearly see how the entanglement entropy
in the cyclic state Ψ between AU and its complement
is divergent: the level of entanglement for each qubit λi
converges to 1, a perfectly entangled system, in the limit.

Moreover, using a different cyclic operator other than
Ψ will change the entanglement entropy by at most a less-
divergent amount, due to the fact that the entanglement
of the qubits must converge to this value in any case.
Therefore the divergence of the entanglement entropy is
universal amongst states as claimed.
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