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New particles beyond the standard model can be constrained by looking at their production in
energetic environments like astrophysical plasmas. The production rate of such particles can be
calculated using the imaginary part of the self-energy. However, as pointed out in [1], plasma effects
may generate an effective in-medium mixing between the new field and plasma species. In this
case the self-energy is not simply the sum of 1-particle-irreducible diagrams, but must take into
account mixing effects. In this short note, the model of a dark photon is used to demonstrate this
plasma-induced mixing and its impact on dark photon production rates.

INTRODUCTION

A good place to look for physics beyond the standard
model (BSM) is in hot, energetic environments like plas-
mas. A typical way to do this is calculate the production
rate of BSM particles, describe their impact on the rel-
evant observables, and constrain the parameters of the
model. Production rates may be obtained via the op-
tical theorem by calculating the imaginary part of the
self-energy. The self-energy must be calculated in the
plasma environment, which can be done using the frame-
work of thermal field theory. In some cases there is a fur-
ther consideration: plasma effects may lead propagation
eigenstates to be different than those in vacuum, mixing
the BSM particle with species in the thermal bath. In
this case the correct self-energy to calculate is not the
sum of 1-particle-irreducible diagrams of the BSM field,
but instead one containing mixed terms. This short note
is based largely on the work of [1], which points out that
(among other things) many calculations of dark photon
production in stellar cores ignore these mixing effects,
leading to incorrect constraints on BSM parameters. The
point of this note is to briefly explain, using a specific
model of massive dark photons, how this mixing arises
in a plasma and its impact on dark photon production
rates.

The rest of the paper is structured as follows. Section 2
introduces the dark photon lagrangian and describes the
mixing between the two photon species. Section 3 shows
how to use the mixed dark photon propagator to calculate
a production rate. Section 4 gives a brief overview of
the photon propagator in thermal field theory. Finally,
Section 5 discusses the impact of mixing on the dark
photon production rate in several regimes.

THE DARK PHOTON LAGRANGIAN AND
PROPOGATION EIGENSTATES

Consider the lagrangian with a new vector field, the
dark photon X:

L ⊃ −1

4
F 2 − 1

4
F 2
X +

m2

2
X2 + eJ(A+ ϵX) (1)

The dark photon has a Stueckelberg mass m, so there are
no additional low-energy BSM states. Apart from this
mass, the dark photon is identical to the QED photon
with charge ϵe. The production and absorption rates in
the plasma can be derived from the imaginary parts of the
poles of the thermal propagator for X. The main point of
reference [1] is that, because of the form of the lagrangian
and plasma effects, the dark photon propagator cannot
be computed simply by summing one-particle-irreducible
diagrams to compute the self energy.

First, recall the situation for the QED photon in vac-
cuum. The propagator can be written as Dµν

F (k) =
−iηµν

k2 , and the photon self-energy Πµν(k2) renormalizes
the electric charge but does not provide the photon a
mass (see section 1.7 of [2]). This self-energy is computed
by summing all 1PI diagrams, like those shown in the up-
per left of Fig. 1. Furthermore, the tensor part of the
self-energy can be factored out: Πµν(k2) = Π(k2)∆µν

T ,
where ∆µν

T projects onto transverse modes. (We will see
later that in a plasma the longitudinal mode is also im-
portant.) It will be convenient to work with only the
scalar part of the self energy for now.

The dark photon thermal self-energy is more compli-
cated because the fermion interactions eJ(A+ ϵX) mean
that a single dark photon can turn into a single QED
photon, at least in internal lines. For example, diagrams
shown in the upper right of Fig. 1 are possible. These are
not 1PI diagrams because they can be cut through the A
line. This means that there is mixing between A and X:
the propogation eigenstates are combinations of the A
and X fields. A familiar example of this is the mismatch
between mass and flavor eigenstates in the neutrino sec-
tor. The poles of the propagation eigenstates are what
we want for computing production rates, and correspond
to the zero-eigenvalue solutions ([1]) to(

k2 −ΠAA −ΠAX

−ΠXA k2 −m2 −ΠXX

)
Here ΠXY represents the self-energy calculated from

the sum of all 1PI diagrams connecting X and Y , and
kµ = (ω, k⃗). There are two zero-eigenvalue solutions

ω2
c = |⃗k|2 +ΠAA +

(ΠAX)2

ΠAA −m2
+O(ϵ4) (2)
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FIG. 1: Figure 1 from [1]. Diagrams relevant for the dark photon (X) self-energy calculation, including both 1PI diagrams
(left) and mixing diagrams (right). Row 1 : The left diagram shows the standard 1PI diagrams that would be exclusively
used to calculate the dark photon self-energy in the absence of mixing. The right diagram shows diagrams that are not 1PI,
but nevertheless contribute to the self energy through intermediate QED photon (A) thermal propagators. The double wavy
line is the fully-resummed thermal propagator for A. Row 2 : Leading order diagrams that contribute to the production and
absorption of the dark photon. Row 3 : The imaginary part of the diagrams in row 2. The star indicates the medium-induced
mixing between A and X.

ω2
c = |⃗k|2 +m2 +ΠXX − (ΠAX)2

ΠAA −m2
+O(ϵ4) (3)

These correspond to two (renormalized) propagation
eigenstates, written in the (A,X) basis:

√
Z−1
A

(
1

ΠAX

ΠAA−m2

)
+O(ϵ2) (4)

(
− ΠAX

ΠAA−m2

1

)
+O(ϵ2) (5)

Since ΠAX is O(ϵ), if ϵ is small then so is the mixing.
The first solution/eigenvector corresponds to the mostly-
A state, and the second to the mostly-X state. We are
interested in the latter for computing the dark photon
production rate. Eq. 3 is the dispersion relation for the
mostly-dark-photon state, with mass m, 1PI self-energy
ΠXX , and a mixing term proportional to (ΠAX)2.

PRODUCTION OF DARK PHOTONS

The imaginary part of ωc is related to the mostly-X
state production and absorption rates via the optical the-
orem (see section 2.2 of [2] for a reminder):

Γabs(ω)− Γprod(ω) ≡ Γdamping(ω) (6)

= − 1

ω
Im

(
ΠXX − (ΠAX)2

ΠAA −m2

)
+O(ϵ4)

(7)

The total production rate per unit volume is

dNprod

dV dt

∫
d̄3kΓprod (8)

The middle two panels of Fig. 1 show the leading or-
der contributions to the pole in the propagator. The
left-middle panel is the usual ΠXX diagram (note that
a diagram with a single fermion loop is not shown be-
cause kinematics forbid a single photon decaying into two
fermions). The right-middle panel shows the mixing term
related to ΠAX .
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Detailed balance requires Γprod = e−
ω
T Γabs, so Γprod =

1

e
ω
T −1

Γdamping ≡ nXΓdamping, with occupation number

nX . Since the QED photon and dark photon interaction
terms e(A+ϵX)J differ only by ϵ, the 1PI self energies can
fortunately all be expressed in terms of the QED photon:
Π ≡ ΠAA = ϵΠAX = ϵ2ΠAX . Writing Π = Πr + iΠi, the
production rate is:

Γprod(ω) = nx
ϵ2m4

ω

Πi

Π2
i + (Πr −m2)2

+O(ϵ4) (9)

To progress any further requires taking a look at the self-
energy of the photon in a plasma.

THE THERMAL PHOTON SELF-ENERGY

A derivation of the photon self-energy at finite tem-
perature can be found in e.g. [3]; the result will just
be quoted here. In an isotropic plasma, the photon self-
energy is

Πµν(k) = (ϵ+µ ϵ
+
ν
∗ + ϵ−µ ϵ

−
ν
∗)ΠT + ϵLµϵ

L
νΠL (10)

ϵ+ and ϵ− are the transverse photon polarization vectors,
and ϵL is the vector for the longitudinal mode that has
appeared in-medium. We’ll focus on the transverse mode
to illustrate the effects of mixing. For a non-relativistic
plasma (ie T

me
<< 1):

Re(ΠT )(k) = ω2
p(1 +

|⃗k|2T
ω2me

) (11)

≡ mp(k)
2 (12)

ω2
p =

e2ne

me
(1− 5T

2me
) (13)

In a medium the transverse photon modes have gained an
effective mass mp(k) approximately equal to the plasma
frequency ωp, with small modifications due to the plasma
temperature. This mass is depends on the electron den-
sity, which generally varies throughout an astrophysical
environment such as a star. So for many relevant calcu-
lations, the plasma mass is spatially dependent.

EFFECT OF MIXING ON PRODUCTION RATES

Consider the production rate for transverse polariza-

tion modes. Define ΓT (k) ≡ Im(ΠT )
ω for convenience. If

mixing effects were neglected, we would keep only the
ΠXX term in eq. 3, and using eq. 12 the production rate
of the transverse state would be

Γprod,T = ϵ2nxΓT (14)

With mixing, however, the production rate is given by
eq. 9 as:

Γprod,T = nxϵ
2m4 ΓT

ω2Γ2
T + (m2

p −m2)2
(15)

There are 3 relevant limits:

1. (m2
p−m2)2 >> ω2Γ2

T and m >> mp: Dark photon
mass above the plasma mass. The production rate
is the same as without mixing - the plasma mass is
effectively ignored.

2. (m2
p − m2)2 >> ω2Γ2

T and m << mp: Below the
plasma mass. The rate is suppressed by 4 powers
of m

mp
- the plasma mass prevents the formation of

dark photons. Γprod,T = m4

m4
p
ϵ2nxΓT .

3. |m2
p − m2|2 << ω2Γ2

T : Resonant production (see
note [4]). When the thermal and dark photon
masses are similar, the production rate may exceed

that without mixing. Γprod,T = m4

ω2ΓT
ϵ2nx.

So the effect of mixing is to introduce three distinct pro-
duction regimes for the transverse dark photon based on
the relationship between the dark photon mass and the
plasma mass. In environments with a variable plasma
density, the plasma frequency will vary as well, and all
three may potentially apply. Fig. 2, taken from [1],
shows how the mixing effects modify constraints on ϵ
from SN1987A observations. The suppression due to
the plasma mass is particularly important, changing the
bound by four orders of magnitude over the specified dark
photon mass range.
It is also worth noting that the mixing is only relevant

due to the plasma effects: as the plasma mass becomes
arbitrarily small, we will generally be in the limit m >>
mp where the ’naive’ production rate calculated using
only the 1PI ΠXX self-energy will give the correct result.
The longitudinal mode was not discussed here and has
different rates, but the general idea that mixing effects
alter the production rates also applies.
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FIG. 2: Fig. 3 from [1]. Constraints on the dark photon coupling parameter ϵ from the lack of anomalous energy loss due
to dark photon production in SN1987A. The dashed black line shows the constraints ignoring mixing effects. The solid black
line shows the proper constraints, and all three regimes of production. Resonant production occurs for dark photon masses
≈ 10−20MeV . Above this range, mixing effects are negligible. Below, the production is suppressed, leading to worse constraints

by a factor of ϵ ∝ m2

m2
p
. Subcomponents of the total emission are indicated by dashed line colors; dotted (orange), resonant

transverse emission, long-dashed (blue), continuum transverse emission, dot-dashed (green), continuum longitudinal emission,
dashed (purple), resonant longitudinal emission. The shaded regions show constraints from cosmological observations, stellar
cooling, and beam dump experiments.

weakly interacting particles (1996), ISBN 978-0-226-70272-
8.

[4] In this case you may worry about the expansion in eq. 3,
which is valid when ϵ << any other scale. On resonance

the requirement becomes more stringent, ϵ << ωΓT
m2 ; if

the reverse is true then the dark photon production rate
is approximately half that of the SM photon.


