University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 212C QM Spring 2023
Assignment 1_{-}Solutions

Due 11:00am Tuesday, April 11, 2023

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me.
- To hand in your homework, please submit a pdf file through the course's canvas website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me if you have any trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency ω. Consider the initial state

$$
\left|\psi_{n, s}(0)\right\rangle \equiv \mathbf{T}(s)|n\rangle
$$

where $|n\rangle \equiv \frac{1}{\sqrt{n!}}\left(\mathbf{a}^{\dagger}\right)^{n}|0\rangle$ is the nth excited state and $\mathbf{T}(s) \equiv e^{-\mathbf{i P} s}$ is the displacement operator (\mathbf{P} is the momentum operator).

Describe (plot it as a function of q for some $n, t, s>0$) the time evolution of the probability distribution: $\rho(q, t)=\left|\psi_{n, s}(q, t)\right|^{2}$ where $\psi_{n, s}(q, t) \equiv\langle q| e^{-\mathbf{i} \mathbf{H} t}\left|\psi_{n, s}(0)\right\rangle$, and $\langle q|$ is a position eigenstate. Does it keep its shape like it does for $n=0$?
There are many ways to do this problem. In retrospect, the easiest way I've found to do this problem is using coherent states, so I should have put it after the next problem.
We want to know

$$
\psi_{n, s}(q, t)=\langle q| e^{-\mathbf{i} \mathbf{H} t}\left|\psi_{n, s}(0)\right\rangle=\langle q| e^{-\mathbf{i} \mathbf{H} t} e^{-\mathbf{i P} s}|n\rangle .
$$

First let's move the time evolution operator through the translation operator so it can get at the eigenstate on the right:

$$
\begin{align*}
e^{-\mathbf{i} \mathbf{H} t} e^{-\mathbf{i P} s} e^{\mathbf{i} \mathbf{H} t} & =\exp \left(-\mathbf{i} s e^{-\mathbf{i} \mathbf{H} t} \mathbf{P} e^{\mathbf{i} \mathbf{H} t}\right) \tag{1}\\
& =\exp \left(-\mathbf{i} s e^{-\mathbf{i} \mathbf{H} t} \frac{1}{\mathbf{i}} \sqrt{\frac{1}{2}}\left(\mathbf{a}-\mathbf{a}^{\dagger}\right) e^{\mathbf{i} \mathbf{H} t}\right) \tag{2}\\
& =\exp \left(-\mathbf{i} s \frac{1}{\mathbf{i}} \sqrt{\frac{1}{2}}\left(e^{\mathbf{i} \hbar \omega t} \mathbf{a}-e^{-\mathbf{i} \hbar \omega t} \mathbf{a}^{\dagger}\right)\right) \tag{3}\\
& \equiv e^{z \mathbf{a}^{\dagger}-z^{\star} \mathbf{a}} \equiv D(z) \tag{4}
\end{align*}
$$

for appropriate $z=e^{-\mathrm{i} \hbar \omega t} s / \sqrt{2}$. Therefore

$$
\begin{equation*}
\psi_{n, s}(q, t)=\langle q| D(z) e^{-\mathbf{i} \mathbf{H} t}|n\rangle=\langle q| D(z) e^{-\mathbf{i} \hbar \omega\left(n+\frac{1}{2}\right)}|n\rangle . \tag{5}
\end{equation*}
$$

The phase $e^{-\mathrm{i} \hbar \omega\left(n+\frac{1}{2}\right)}=e^{\mathbf{i} \phi}$ disappears in the probability.
Wait - how did I know that

$$
\begin{equation*}
e^{-\mathbf{i} \mathbf{H} t} \mathbf{a} e^{\mathbf{i} \mathbf{H} t}=e^{\mathbf{i} \hbar \omega t} \mathbf{a}, e^{-\mathbf{i} \mathbf{H} t} \mathbf{a}^{\dagger} e^{\mathbf{i} \mathbf{H} t}=e^{-\mathbf{i} \hbar \omega t} \mathbf{a}^{\dagger} \quad ? \tag{6}
\end{equation*}
$$

Well, one way is to use the general fact that $e^{\mathcal{O}} \mathbf{a} e^{-\mathcal{O}}=e^{\text {ado }} \mathbf{a}$ where $\operatorname{ad} \mathcal{O}(\mathbf{a}) \equiv$ $[\mathcal{O}, \mathbf{a}]$. Or we could just Taylor expand in t and repeatedly use $[\mathbf{H}, \mathbf{a}]=-\hbar \omega \mathbf{a}$.
So we just need to know

$$
\begin{equation*}
\langle q| D(z)|n\rangle . \tag{7}
\end{equation*}
$$

Notice that $D(z)|0\rangle=|z\rangle$ is the normalized coherent state with $\mathbf{a}|z\rangle=z|z\rangle$. So for $n=0$ the answer is just the wavefunction of the coherent state. To figure out (7), rewrite

$$
\begin{equation*}
D(z)=e^{z \mathbf{a}^{\dagger}-z^{\star} \mathbf{a}}=f\left(z, z^{\star}\right) e^{c\left(z-z^{\dagger}\right) \mathbf{Q}} e^{\mathbf{i}^{c^{\prime}}\left(z+z^{\star}\right) \mathbf{P}} \tag{8}
\end{equation*}
$$

using the BCH identity

$$
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} \text { if }[A, B] \text { is a } c \text {-number . }
$$

This gives $f\left(z, z^{\star}\right)=e^{-\frac{1}{4}\left(z^{2}-z^{\star 2}\right)}$ and $c=c^{\prime}=\frac{1}{\sqrt{2}}$. Then

$$
\begin{align*}
\langle q| D(z)|n\rangle & =f\left(z, z^{\star}\right)\langle q| e^{c\left(z-z^{\dagger}\right) \mathbf{Q}} e^{\mathbf{i} c^{\prime}\left(z+z^{\star}\right) \mathbf{P}}|n\rangle \tag{9}\\
& =f\left(z, z^{\star}\right) e^{c\left(z-z^{\dagger}\right) q}\langle q| e^{\mathbf{i} c^{\prime}\left(z+z^{\star}\right) \mathbf{P}}|n\rangle \tag{10}\\
& =f\left(z, z^{\star}\right) e^{c\left(z-z^{\dagger}\right) q}\left\langle q+c^{\prime}\left(z+z^{\star}\right) \mid n\right\rangle \tag{11}\\
& =f\left(z, z^{\star}\right) e^{c\left(z-z^{\dagger}\right) q} \psi_{n}\left(q+c^{\prime}\left(z+z^{\star}\right)\right) \tag{12}
\end{align*}
$$

where $\psi_{n}(q) \equiv\langle q \mid n\rangle=\frac{1}{\sqrt{2^{n} n!}} \pi^{-1 / 4} H_{n} e^{-|q|^{2}}$ is just the wavefunction for the nth excited oscillator state.

So the wavefunction keeps its shape and sloshes back and forth. It looks like this for $n=0$ (left) and $n=2$ (right) at various t (smaller than the period, which I've set to 2π):

2. Coherent states.

Consider a quantum harmonic oscillator with frequency ω. The creation and annihilation operators \mathbf{a}^{\dagger} and a satisfy the algebra

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1
$$

and the vacuum state $|0\rangle$ satisfies $\mathbf{a}|0\rangle=0$. Coherent states are eigenstates of the annihilation operator:

$$
\mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle
$$

(a) Show that

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}}|0\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

is an eigenstate of \mathbf{a} with eigenvalue α. (\mathbf{a} is not hermitian, so its eigenvalues need not be real.)
$\hat{a}|n\rangle=\sqrt{n}|n-1\rangle \rightarrow \hat{a}|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \hat{a}|n\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=1}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle$
Where we've used the fact \hat{a} annihilates the vacuum. Reshuffling the summand:
$\hat{a}|n\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n+1}}{\sqrt{n!}}|n\rangle=\alpha|\alpha\rangle$
(b) Coherent states with different α are not orthogonal. (a is not hermitian, so its eigenstates need not be orthogonal.) Show that $\left|\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle\right|^{2}=e^{-\left|\alpha_{1}-\alpha_{2}\right|^{2}}$. $\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle=e^{-\left|\alpha_{1}\right|^{2} / 2} e^{-\left|\alpha_{2}\right|^{2} / 2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\alpha_{1}^{* n}}{\sqrt{n!}} \frac{\alpha_{2}^{m}}{\sqrt{m!}}\langle n \mid m\rangle=e^{-\left|\alpha_{1}\right|^{2} / 2} e^{-\left|\alpha_{2}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha_{1}^{* n} \alpha_{2}^{n}}{n!}$

Where in the last step we have used the orthogonality of $\{|n\rangle\}$. We recognize this sum as an exponential:
$\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle=e^{-\left|\alpha_{1}\right|^{2} / 2} e^{-\left|\alpha_{2}\right|^{2} / 2} e^{\alpha_{1}^{*} \alpha_{2}} \rightarrow\left|\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle\right|^{2}=e^{-\left|\alpha_{1}-\alpha_{2}\right|^{2}}$
(c) Compute the expectation value of the number operator $\mathbf{n}=\mathbf{a}^{\dagger} \mathbf{a}$ in the coherent state $|\alpha\rangle$.
$\langle\alpha| \hat{a}^{\dagger} \hat{a}|\alpha\rangle=|\alpha|^{2}\langle\alpha \mid \alpha\rangle=|\alpha|^{2}$
(d) Time evolution acts nicely on coherent states. The hamiltonian is $\mathbf{H}=$ $\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2}\right)$. Show that a coherent state evolves into a coherent state with an eigenvalue $\alpha(t)$:

$$
e^{-\mathbf{i} \mathbf{H} t}|\alpha\rangle=e^{-\mathbf{i} \omega t / 2}|\alpha(t)\rangle
$$

where $\alpha(t)=e^{-\mathrm{i} \omega t} \alpha$.
$|\alpha(t)\rangle=e^{-\mathbf{i} \hat{H} t}\left|\alpha_{0}\right\rangle=e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha_{0}^{n}}{\sqrt{n!}} e^{-\mathbf{i} \omega\left(n+\frac{1}{2}\right) t}|n\rangle$
We pull out the ground state contribution: $=e^{-\mathrm{i} \frac{\omega t}{2}} e^{-\left|\alpha_{0}\right|^{2} / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha_{0} e^{-\mathrm{i} \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle$ Which by looking at the definition $|\alpha(t)\rangle=\left|e^{-\mathbf{i} \omega t} \alpha_{0}\right\rangle$ we have shown the result.
(e) Show that the coherent states can be used to resolve the identity in the form

$$
\mathbb{1}=\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|
$$

where $d^{2} \alpha \equiv d \alpha_{1} d \alpha_{2}$ in terms of the real and imaginary parts of $\alpha=\alpha_{1}+\mathbf{i} \alpha_{2}$. One way to do this is to relate this expression to $\mathbb{1}=\sum_{n=0}^{\infty}|n\rangle\langle n|$.

The following three problems form a triptych, on the subject of resolving the various infinities involved in the quantum mechanics of a particle on the real line. There are two such infinities: one is the fact that the real line goes on forever; this is resolved in problem 3. The other is the fact that in between any two points there are infinitely many points; this is resolved in problem 4. In problem 5 we resolve both to get a finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:

That is, its coordinate x takes values in $[0,2 \pi R]$ and we identify $x \simeq x+2 \pi R$.
(a) Let's assume that the wavefunction of the particle is periodic in x :

$$
\psi(x+2 \pi R)=\psi(x)
$$

What set of values can its momentum (that is, eigenvalues of the operator $\left.\mathbf{p}=-i \hbar \partial_{x}\right)$ take?
$\langle x+2 \pi R \mid \psi\rangle=\langle x \mid \psi\rangle$
$\int \frac{d p}{2 \pi}\langle x+2 \pi R \mid p\rangle\langle p \mid \psi\rangle=\int \frac{d p}{2 \pi}\langle x \mid p\rangle\langle p \mid \psi\rangle$
$\int \frac{d p}{2 \pi} e^{\mathbf{i}(x+2 \pi R) p}\langle p \mid \psi\rangle=\int \frac{d p}{2 \pi} e^{\mathbf{i} x p}\langle p \mid \psi\rangle$
For this to be true $e^{2 \pi \mathbf{i} R p}=1$ thus quantizing $p=\frac{n}{R}$ for $n \in \mathbb{Z}$
To emphasize: $x \in S^{1} \Longrightarrow p \in \mathbb{Z}$
(b) Recall that the overall phase of the state vector is not physical data. This suggests the possibility that the wavefunction might not be periodic, but instead might acquire a phase when we go around the circle:

$$
\psi(x+2 \pi R)=e^{i \varphi} \psi(x)
$$

for some fixed φ. In this case what values does the momentum take?
The same logic of the above holds only now $e^{2 \pi \mathbf{i} R p}=e^{\mathbf{i} \phi}$ implying $p=\frac{n}{R}+\frac{\phi}{2 \pi R}$

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete values $x=n a, n \in \mathbb{Z}$ where a is some unit of length and n is an integer. We'll call the corresponding position eigenstates $|n\rangle$. The Hilbert space is still infinite-dimensional, but at least we have in our hands a countably infinite basis. In this problem we will determine: what is the spectrum of the momentum operator \mathbf{p} in this system?
(a) Consider the state

$$
|\theta\rangle=\frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} e^{i n \theta}|n\rangle
$$

Show that $|\theta\rangle$ is an eigenstate of the translation operator \hat{T}, defined by

$$
\hat{T}=\sum_{n \in \mathbb{Z}}|n+1\rangle\langle n| .
$$

Why do I want to call θ momentum?
$T|\theta\rangle=\sum_{n \in \mathbb{Z}} e^{i n \theta}|n+1\rangle=e^{-\mathbf{i} \theta}|\theta\rangle$. The values of n shift along \mathbb{Z}.
Recall that $T=e^{-\mathbf{i} \hat{p} a}$ so $e^{-\mathrm{i} p a}|\theta\rangle=e^{-\mathbf{i} \theta}|\theta\rangle$ implying $\theta=p a$.
(b) What range of values of θ give different states $|\theta\rangle$? [Recall that n is an integer.]
Since n is an integer $|\theta\rangle=|\theta+2 \pi\rangle$. We've found that for $x \in \mathbb{Z} \Longrightarrow p \in S^{1}$ (this circle is called the Brillioun zone)!

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we'll wrap the lattice around a circle, in the following sense. Its position can take only the discrete values $x=a, 2 a, 3 a, \ldots, N a$ (where, again, a is some unit of length and again we'll call the corresponding position eigenstates $|n\rangle$). Suppose further that the particle lives on a circle, so that the site labelled $x=(N+1) a$ is the same as the site labelled $x=a$. We can visualize this as in the figure:

In this case, the Hilbert space has finite dimension N.
Consider the following $N \times N$ matrix representation of a Hamiltonian operator
(a is a constant):

$$
H=\frac{1}{a^{2}}\left(\begin{array}{cccccccc}
\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & \cdots & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 2 & -1 \\
-1 & 0 & 0 & 0 & 0 & \cdots & -1 & 2
\end{array} & \underbrace{}_{N} N) .
\end{array}\right.
$$

(a) Convince yourself that this is equivalent to the following: Acting on an N dimensional Hilbert space with orthonormal basis $\{|n\rangle, n=1, \ldots, N\}, \hat{H}$ acts by

$$
a^{2} \hat{H}|n\rangle=2|n\rangle-|n+1\rangle-|n-1\rangle, \quad \text { with }|N+1\rangle \simeq|1\rangle
$$

that is, we consider the arguments of the ket to be integers modulo N.
I will set $a=1$ until needed. Recall that $H_{n m} \equiv\langle n| H|m\rangle$. Our claim above is compatible with $H_{n n}=2$ by orthogonality as well as off diagonals $H_{n+1, n}=H_{n-1, n}=-1$.
The top right and left corners are compatible by: $H_{0, N}=2\langle 0 \mid N\rangle-\langle 0 \mid N+1\rangle-$ $\langle 0 \mid N-1\rangle=-\langle 0 \mid N+1=0\rangle=-1$ making use of the periodicity. The rest are appropriately 0 .
(b) Show that \hat{H} and \hat{T} (where \hat{T} is the 'shift operator' defined by $\hat{T}:|n\rangle \mapsto$ $|n+1\rangle)$ can be simultaneously diagonalized.
$H T|n\rangle=H|n+1\rangle=2|n+1\rangle-|n+2\rangle-|n\rangle=T(2|n\rangle-|n+1\rangle-$ $|n-1\rangle)=T H|n\rangle$ so there is a discrete translation invariance.

Consider again the state

$$
|\theta\rangle=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{i n \theta}|n\rangle .
$$

(c) Show that $|\theta\rangle$ is an eigenstate of \hat{T}, for values of θ that are consistent with the periodicity $n \simeq n+N$.
See solutions to homework 1 .
(d) What values of θ give different states $|\theta\rangle$? [Recall that n is an integer.]

Once again see homework 1. Specifically $\theta=\frac{2 \pi k}{N}$ for $k \in\{0,1, \cdots, N-1\}$
Recalling the relationship between p and θ we arrive at the punchline that for $x \in \mathbb{Z}_{N} \Longrightarrow p \in \mathbb{Z}_{N}$
(e) Find the matrix elements of the unitary operator \mathbf{U} which relates position eigenstates $|n\rangle$ to momentum eigenstates $|\theta\rangle: U_{\theta n} \equiv\langle n \mid \theta\rangle$.
$\langle n \mid \theta\rangle=\frac{1}{\sqrt{N}} \sum_{n^{\prime}} e^{\mathrm{in} n^{\prime} \theta}\left\langle n \mid n^{\prime}\right\rangle=\frac{1}{\sqrt{N}} e^{\mathrm{i} n \theta}$ by orthogonality.
(f) Find the spectrum of \hat{H}.

Draw a picture of $\epsilon(\theta)$: plot the energy eigenvalues versus the 'momentum' θ.
Because $[H, T]=0$ we can diagonalize them in the same basis.
$H|\theta\rangle=\frac{1}{\sqrt{N}} \sum_{n} e^{\mathrm{i} n \theta}(2|n\rangle-|n+1\rangle-|n-1\rangle)=2|\theta\rangle-e^{-\mathbf{i} \theta}|\theta\rangle-e^{\mathbf{i} \theta}|\theta\rangle$
Recall that $\cos \theta=\frac{1}{2}\left(e^{\mathbf{i} \theta}+e^{-\mathbf{i} \theta}\right)$ and so consolidating terms: $\epsilon(\theta)=2+2 \cos \theta$

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional Laplacian $-\partial_{x}^{2}$. That is, show (using Taylor's theorem) that

$$
a^{2} \partial_{x}^{2} f(x)=-2 f(x)+(f(x+a)+f(x-a))+\mathcal{O}(a)
$$

(where " $\mathcal{O}(a)$ " denotes terms proportional to the small quantity a).
Taylor Expansion: $f(x+a)=f(x)+a f^{\prime}(x)+\frac{1}{2} a^{2} f^{\prime \prime}(x)+\cdots$ so we can write that $f^{\prime}(x)=\frac{f(x+a)-f(x-a)}{2 a}$
$f(x+a)=f(x)+\frac{1}{2}(f(x+a)-f(x-a))+\frac{1}{2} a^{2} f^{\prime \prime}(x)$
$a^{2} f^{\prime \prime}(x)=f(x+a)+f(x-a)-2 f(x)$
Thus our form of H acting on $|n\rangle$ approximates a finite step differentiation.
(h) In the expression for the Hamiltonian, to restore units, I should have written:

$$
\hat{H}|n\rangle=\frac{\hbar^{2}}{2 m} \frac{1}{a^{2}}(2|n\rangle-|n+1\rangle-|n-1\rangle), \quad \text { with }|N+1\rangle \simeq|1\rangle
$$

where a is the distance between the sites, and m is the mass. Consider the limit where $a \rightarrow 0, N \rightarrow \infty$ and look at the lowest-energy states (near $p=0)$; show that we get the spectrum of a free particle on the line, $\epsilon=\frac{p^{2}}{2 m}$. Based on the above we have that in the continuum limit $H=-\partial_{x}^{2}$ and thus with the inclusion of the appropriate factors becomes the kinetic energy operator $\frac{\hat{p}^{2}}{2 m}$ in position space.
Since H has no potential terms this is the only contribution to the total energy.
The highest momentum states would be the one's associated with largest values of θ and to whom the details of our regularization would matter most.

