University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 212C QM Spring 2023
Assignment 1 —  Solutions

Due 11:00am Tuesday, April 11, 2023

e Homework will be handed in electronically. Please do not hand in photographs of
hand-written work. The preferred option is to typeset your homework. It is easy
to do and you need to do it anyway as a practicing scientist. A LaTeX template
file with some relevant examples is provided here. If you need help getting set
up or have any other questions please email me.

e To hand in your homework, please submit a pdf file through the course’s canvas
website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me if you have any
trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency w. Consider the initial state

|¢hn,5(0)) = T(s) |n)
where |n) = \/LE (af)"]0) is the nth excited state and T(s) = e ™P* is the dis-
placement operator (P is the momentum operator).

Describe (plot it as a function of ¢ for some n,t, s > 0) the time evolution of the

probability distribution: p(g,t) = [¢n,s(q,t)|* where ¥, s(q, t) = {qle ™ |4, 5(0)),
and (g| is a position eigenstate. Does it keep its shape like it does for n = 07

There are many ways to do this problem. In retrospect, the easiest way I've
found to do this problem is using coherent states, so I should have put it after
the next problem.

We want to know

Uns(q: ) = (qle ™1, 5(0)) = (gle e P |n) .


https://mcgreevy.physics.ucsd.edu/s23/tex-template.tar.gz

First let’s move the time evolution operator through the translation operator so
it can get at the eigenstate on the right:

efthefiPseth = exp ( 1HtPelHt) (1)

1 /1 .
= exp < ise 1Hti 5 (a _ aT) e1Hz‘,> (2)

e D(z) (4)
for appropriate z = e~ !s/\/2. Therefore

Yns(a,t) = (al D(z)e ™) = (gl D(=)e D) (5)

The phase emihw(nty) = ¢i¢ disappears in the probability.
Wait — how did I know that

6—1HtaelHt — elhwta7 e—lHtaTelHt — 6—1hwta'r ? (6)

Well, one way is to use the general fact that e®ac™® = e¢*°a where adO(a) =
(O, a]. Or we could just Taylor expand in ¢ and repeatedly use [H,a|] = —lwa.

So we just need to know

{alD(z)[n) . (7)

Notice that D(z) |0) = |z) is the normalized coherent state with a|z) = z|z). So
for n = 0 the answer is just the wavefunction of the coherent state. To figure out
(7), rewrite

D(z) = e 752 = f(z, 2)em2Qel (2+27)P (8)
using the BCH identity

1 ) )
eAtB — pAcBo—3[AB] if [A, B] is a c-number .

This gives f(z,z*) = e i) and e = ¢ = \/Li Then
(alD(=)In) = f(,2") <q|ec<z QI (40P ) (9)
— f(z,z*)ec <q|e‘c z4z* P‘n> (10)
= f(z, 297 (g + d (2 + 2)|n) (11)
= f(z,20)e Ny, (g + (2 + 2*)) (12)



where 1, (q) = (¢q|n) = ﬁﬂ*1/4Hne*|q‘2 is just the wavefunction for the nth

excited oscillator state.

So the wavefunction keeps its shape and sloshes back and forth. It looks like this
for n = 0 (left) and n = 2 (right) at various ¢ (smaller than the period, which
I've set to 2m):

|4n=0 s=319,t=0.1,2,3]| | @n=2, z=3lq,t=0,1,2,3)|
osf
o4l

o4l |

ozf |/

2. Coherent states.

Consider a quantum harmonic oscillator with frequency w. The creation and
annihilation operators af and a satisfy the algebra

[a, aT] =1

and the vacuum state |0) satisfies a|0) = 0. Coherent states are eigenstates of
the annihilation operator:
ala) =ala).

(a) Show that
—Ot aaT —Ot
) = lol?/2, 0) = ||/QZ\/—|”

is an eigenstate of a with eigenvalue a. (a is not hermitian, so its eigenvalues
need not be real.)

aln) =+v/nn—1) = ala) =e ~lef? 2y O\ﬁ aln) =e ~let? SN \ﬁ\/_|”_1>
Where we’ve used the fact a annihilates the vacuum. Reshuffling the sum-
mand:

a n+1
ifn) = e PRI O n) = ala)

(b) Coherent states with different v are not orthogonal. (a is not hermitian, so
its eigenstates need not be orthogonal.) Show that | (an|as) [2 = e~lor—o2,

(o |ag) = elonl?/2elaal?/2 5700 I5moe AL SE (i ) = elnl/2elaal?/2 500 2iied
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Where in the last step we have used the orthogonality of {|n)}. We recognize
this sum as an exponential:

(a1 ag) = el 2el0al2eeior — | (qy|ay) |2 = emlenmeal

(c) Compute the expectation value of the number operator n = afa in the
coherent state |a).
(alatala) = |af* {ala) = |af?

(d) Time evolution acts nicely on coherent states. The hamiltonian is H =
hw (a’a+ 1) . Show that a coherent state evolves into a coherent state with
an eigenvalue a(t):

efth ‘a> — efiwt/Q |Oé(t)>

where a(t) = e"“a.

la(t)) = o iHt o) = e~ laol?/2 ZOO A —iw(ntg)t In)

n=0 /p!
We pull out, the ground state contribution: = 1% ¢~le0/*/2 > % |n)
Which by looking at the definition |a(t)) = |e *ag) we have shown the

result.
(e) Show that the coherent states can be used to resolve the identity in the form

1= [

™

where d?a = daydo, in terms of the real and imaginary parts of o = o +icvs.
One way to do this is to relate this expression to 11 = > |n) (n].

The following three problems form a triptych, on the subject of resolving the various
infinities involved in the quantum mechanics of a particle on the real line. There are
two such infinities: one is the fact that the real line goes on forever; this is resolved in
problem 3. The other is the fact that in between any two points there are infinitely
many points; this is resolved in problem 4. In problem 5 we resolve both to get a
finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:



That is, its coordinate = takes values in [0, 27 R]| and we identify x ~ x + 27 R.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

U(x+27R) = (x) .
What set of values can its momentum (that is, eigenvalues of the operator
p = —ihd,) take?
(z + 27 R[¢) = (z[¥)
J 52 &+ 2nRIp) pl) = [ 52 (xlp) (pl)

dp SRR (plyy) = [ 2l (ply)
For this to be true eszp = 1 thus quantizing p = % for n € Z

To emphasize: x € S! = pecZ

(b) Recall that the overall phase of the state vector is not physical data. This
suggests the possibility that the wavefunction might not be periodic, but
instead might acquire a phase when we go around the circle:

U(x + 27 R) = e (x)

for some fixed . In this case what values does the momentum take?

The same logic of the above holds only now €™ = i implying p = Z+52-

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the
discrete values x = na,n € Z where a is some unit of length and n is an integer.
We'll call the corresponding position eigenstates |n). The Hilbert space is still
infinite-dimensional, but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum

operator p in this system?

(a) Consider the state

Z ezn@ ‘n

nGZ

Show that |) is an eigenstate of the translation operator T', defined by
P =S 1) (n

Why do I want to call # momentum?
T10) =3 ,cpe™|n+1) = e |0). The values of n shift along Z.
Recall that T = e~ 50 e |0) = 7 |) implying 6 = pa.
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(b) What range of values of 0 give different states |#)? [Recall that n is an
integer. |
Since n is an integer |0) = |6 + 27). We've found that forz € Z = p € S!
(this circle is called the Brillioun zone)!

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice
around a circle, in the following sense. Its position can take only the discrete
values = = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll
call the corresponding position eigenstates |n)). Suppose further that the particle
lives on a circle, so that the site labelled x = (N + 1)a is the same as the site
labelled x = a. We can visualize this as in the figure:

©
@ @
0]

o @]
©®)

In this case, the Hilbert space has finite dimension V.

Consider the following N x N matrix representation of a Hamiltonian operator



(a is a constant):

(a)

210 0 0 --- 0 —1
12 -10 0 --0 0
012 -10--0 0

g-Ltl0 0-12-1.-0 0ly

a/2 . . . .
000 0 0 2 —1
10 0 0 0 --—1 2
N

Convince yourself that this is equivalent to the following: Acting on an N-
dimensional Hilbert space with orthonormal basis {|n),n = 1,...,N}, H
acts by

a*Hn)=2|n) —|n+1)—|n—1), with |[N4+1)~]1)

that is, we consider the arguments of the ket to be integers modulo V.

I will set @ = 1 until needed. Recall that H,,, = (n|H |m). Our claim
above is compatible with H,, = 2 by orthogonality as well as off diagonals
Hyiip=Hp1,=—1

The top right and left corners are compatible by: Hy y = 2 (0| N)—(0|N + 1)—
(O|N — 1) = — (0|N + 1 = 0) = —1 making use of the periodicity. The rest
are appropriately 0.

Show that H and T (where T is the ‘shift operator’ defined by 7' : |n)
|n 4+ 1)) can be simultaneously diagonalized.

HT|n) = Hn+1) = 2n+1) —n+2) —|n) = T(2|n) — |n+1) —
|n — 1)) = T'H |n) so there is a discrete translation invariance.

Consider again the state

()

1 <,
16) = \/—N;em In) .

Show that |#) is an eigenstate of T, for values of @ that are consistent with
the periodicity n ~n + N.

See solutions to homework 1.



(d) What values of 0 give different states |¢)7 [Recall that n is an integer.]
Once again see homework 1. Specifically § = % for k €{0,1,--- ,N — 1}

Recalling the relationship between p and 6 we arrive at the punchline that
forx € Zy = p€Zy

(e) Find the matrix elements of the unitary operator U which relates position

eigenstates |n) to momentum eigenstates |6): Uy, = (n|0).

(n|0) = LN S e (n|n') = \/Lﬁei”(’ by orthogonality.

(f) Find the spectrum of H.

Draw a picture of €(6): plot the energy eigenvalues versus the ‘momentum’

6.
Because [H,T] = 0 we can diagonalize them in the same basis.

_ 1 ind _ —-i6 i0
H0) = 7522, (2[n) = In+1) = [n = 1)) = 2[0) — 7 |0) — " [6)
Recall that cos§ = (e +¢7") and so consolidating terms: €() = 242 cos 0
eiA)

4k

®
-
®
.
.
1 -
®
-
®
®
L L L L L k| ]

1 2 3 4 5 6

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional
Laplacian —92. That is, show (using Taylor’s theorem) that

a’0, f(z) = =2f(z) + (f(x + a) + f(z — a)) + O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

Taylor Expansion: f(z +a) = f(z) + af'(z) + 3a®f"(z) + -+ so we can

write that f/(x) = W

flxz+a) = f(2) +3(f(x +a) = flz —a)) + 3a°f"(2)
a*f"(x) = f(z +a) + f(z — a) — 2f(z)
Thus our form of H acting on |n) approximates a finite step differentiation.

(h) In the expression for the Hamiltonian, to restore units, I should have written:

. R 1 .
Hin) = 5 ——(2[n) = [n+1) = [n = 1)), with [N +1) ~ 1)



where a is the distance between the sites, and m is the mass. Consider
the limit where a — 0, N — oo and look at the lowest-energy states (near

p = 0); show that we get the spectrum of a free particle on the line, e = %.
Based on the above we have that in the continuum limit H = —92 and thus

with the inclusion of the appropriate factors becomes the kinetic energy
operator % in position space.

Since H has no potential terms this is the only contribution to the total
energy.

The highest momentum states would be the one’s associated with largest
values of # and to whom the details of our regularization would matter most.



