
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 212C QM Spring 2023
Assignment 1 – Solutions

Due 11:00am Tuesday, April 11, 2023

• Homework will be handed in electronically. Please do not hand in photographs of

hand-written work. The preferred option is to typeset your homework. It is easy

to do and you need to do it anyway as a practicing scientist. A LaTeX template

file with some relevant examples is provided here. If you need help getting set

up or have any other questions please email me.

• To hand in your homework, please submit a pdf file through the course’s canvas

website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me if you have any

trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency ω. Consider the initial state

|ψn,s(0)〉 ≡ T(s) |n〉

where |n〉 ≡ 1√
n!

(
a†
)n |0〉 is the nth excited state and T(s) ≡ e−iPs is the dis-

placement operator (P is the momentum operator).

Describe (plot it as a function of q for some n, t, s > 0) the time evolution of the

probability distribution: ρ(q, t) = |ψn,s(q, t)|2 where ψn,s(q, t) ≡
〈
q|e−iHt|ψn,s(0)

〉
,

and 〈q| is a position eigenstate. Does it keep its shape like it does for n = 0?

There are many ways to do this problem. In retrospect, the easiest way I’ve

found to do this problem is using coherent states, so I should have put it after

the next problem.

We want to know

ψn,s(q, t) =
〈
q|e−iHt|ψn,s(0)

〉
=
〈
q|e−iHte−iPs|n

〉
.
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First let’s move the time evolution operator through the translation operator so

it can get at the eigenstate on the right:

e−iHte−iPseiHt = exp
(
−ise−iHtPeiHt

)
(1)

= exp

(
−ise−iHt1

i

√
1

2

(
a− a†

)
eiHt

)
(2)

= exp

(
−is1

i

√
1

2

(
ei~ωta− e−i~ωta†

))
(3)

≡ eza
†−z?a ≡ D(z) (4)

for appropriate z = e−i~ωts/
√

2. Therefore

ψn,s(q, t) =
〈
q|D(z)e−iHt|n

〉
=
〈
q|D(z)e−i~ω(n+

1
2
)|n
〉
. (5)

The phase e−i~ω(n+
1
2
) = eiφ disappears in the probability.

Wait – how did I know that

e−iHtaeiHt = ei~ωta, e−iHta†eiHt = e−i~ωta† ? (6)

Well, one way is to use the general fact that eOae−O = eadOa where adO(a) ≡
[O, a]. Or we could just Taylor expand in t and repeatedly use [H, a] = −~ωa.

So we just need to know

〈q|D(z)|n〉 . (7)

Notice that D(z) |0〉 = |z〉 is the normalized coherent state with a |z〉 = z |z〉. So

for n = 0 the answer is just the wavefunction of the coherent state. To figure out

(7), rewrite

D(z) = eza
†−z?a = f(z, z?)ec(z−z

†)Qeic
′(z+z?)P (8)

using the BCH identity

eA+B = eAeBe−
1
2
[A,B] if [A,B] is a c-number .

This gives f(z, z?) = e−
1
4(z2−z?2) and c = c′ = 1√

2
. Then

〈q|D(z)|n〉 = f(z, z?)
〈
q|ec(z−z†)Qeic′(z+z?)P|n

〉
(9)

= f(z, z?)ec(z−z
†)q
〈
q|eic′(z+z?)P|n

〉
(10)

= f(z, z?)ec(z−z
†)q 〈q + c′(z + z?)|n〉 (11)

= f(z, z?)ec(z−z
†)qψn(q + c′(z + z?)) (12)
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where ψn(q) ≡ 〈q|n〉 = 1√
2nn!

π−1/4Hne
−|q|2 is just the wavefunction for the nth

excited oscillator state.

So the wavefunction keeps its shape and sloshes back and forth. It looks like this

for n = 0 (left) and n = 2 (right) at various t (smaller than the period, which

I’ve set to 2π):

2. Coherent states.

Consider a quantum harmonic oscillator with frequency ω. The creation and

annihilation operators a† and a satisfy the algebra

[a, a†] = 1

and the vacuum state |0〉 satisfies a |0〉 = 0. Coherent states are eigenstates of

the annihilation operator:

a |α〉 = α |α〉 .

(a) Show that

|α〉 = e−|α|
2/2eαa

† |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉

is an eigenstate of a with eigenvalue α. (a is not hermitian, so its eigenvalues

need not be real.)

â |n〉 =
√
n |n− 1〉 → â |α〉 = e−|α|

2/2
∑∞

n=0
αn
√
n!
â |n〉 = e−|α|

2/2
∑∞

n=1
αn
√
n!

√
n |n− 1〉

Where we’ve used the fact â annihilates the vacuum. Reshuffling the sum-

mand:

â |n〉 = e−|α|
2/2
∑∞

n=0
αn+1
√
n!
|n〉 = α |α〉

(b) Coherent states with different α are not orthogonal. (a is not hermitian, so

its eigenstates need not be orthogonal.) Show that | 〈α1|α2〉 |2 = e−|α1−α2|2 .

〈α1 |α2〉 = e−|α1|2/2e−|α2|2/2
∑∞

n=0

∑∞
m=0

α∗n1√
n!

αm
2√
m!
〈n |m〉 = e−|α1|2/2e−|α2|2/2

∑∞
n=0

α∗n1 αn
2

n!
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Where in the last step we have used the orthogonality of {|n〉}. We recognize

this sum as an exponential:

〈α1 |α2〉 = e−|α1|2/2e−|α2|2/2eα
∗
1α2 → | 〈α1|α2〉 |2 = e−|α1−α2|2

(c) Compute the expectation value of the number operator n = a†a in the

coherent state |α〉.〈
α|â†â|α

〉
= |α|2 〈α|α〉 = |α|2

(d) Time evolution acts nicely on coherent states. The hamiltonian is H =

~ω
(
a†a + 1

2

)
. Show that a coherent state evolves into a coherent state with

an eigenvalue α(t):

e−iHt |α〉 = e−iωt/2 |α(t)〉

where α(t) = e−iωtα.

|α(t)〉 = e−iĤt |α0〉 = e−|α0|2/2
∑∞

n=0
αn
0√
n!
e−iω(n+

1
2
)t |n〉

We pull out the ground state contribution: = e−i
ωt
2 e−|α0|2/2

∑∞
n=0

(α0e−iωt)n√
n!

|n〉
Which by looking at the definition |α(t)〉 =

∣∣e−iωtα0

〉
we have shown the

result.

(e) Show that the coherent states can be used to resolve the identity in the form

1 =

∫
d2α

π
|α〉 〈α|

where d2α ≡ dα1dα2 in terms of the real and imaginary parts of α = α1+iα2.

One way to do this is to relate this expression to 1 =
∑∞

n=0 |n〉 〈n|.

The following three problems form a triptych, on the subject of resolving the various

infinities involved in the quantum mechanics of a particle on the real line. There are

two such infinities: one is the fact that the real line goes on forever; this is resolved in

problem 3. The other is the fact that in between any two points there are infinitely

many points; this is resolved in problem 4. In problem 5 we resolve both to get a

finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:
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That is, its coordinate x takes values in [0, 2πR] and we identify x ' x+ 2πR.

(a) Let’s assume that the wavefunction of the particle is periodic in x:

ψ(x+ 2πR) = ψ(x) .

What set of values can its momentum (that is, eigenvalues of the operator

p = −i~∂x) take?

〈x+ 2πR|ψ〉 = 〈x|ψ〉∫
dp
2π
〈x+ 2πR|p〉 〈p|ψ〉 =

∫
dp
2π
〈x|p〉 〈p|ψ〉∫

dp
2π
ei(x+2πR)p 〈p|ψ〉 =

∫
dp
2π
eixp 〈p|ψ〉

For this to be true e2πiRp = 1 thus quantizing p = n
R

for n ∈ Z
To emphasize: x ∈ S1 =⇒ p ∈ Z

(b) Recall that the overall phase of the state vector is not physical data. This

suggests the possibility that the wavefunction might not be periodic, but

instead might acquire a phase when we go around the circle:

ψ(x+ 2πR) = eiϕψ(x)

for some fixed ϕ. In this case what values does the momentum take?

The same logic of the above holds only now e2πiRp = eiφ implying p = n
R

+ φ
2πR

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the

discrete values x = na, n ∈ Z where a is some unit of length and n is an integer.

We’ll call the corresponding position eigenstates |n〉. The Hilbert space is still

infinite-dimensional, but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum

operator p in this system?

(a) Consider the state

|θ〉 =
1√
N

∑
n∈Z

einθ |n〉 .

Show that |θ〉 is an eigenstate of the translation operator T̂ , defined by

T̂ =
∑
n∈Z

|n+ 1〉 〈n| .

Why do I want to call θ momentum?

T |θ〉 =
∑

n∈Z e
inθ |n+ 1〉 = e−iθ |θ〉. The values of n shift along Z.

Recall that T = e−ip̂a so e−ipa |θ〉 = e−iθ |θ〉 implying θ = pa.
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(b) What range of values of θ give different states |θ〉? [Recall that n is an

integer.]

Since n is an integer |θ〉 = |θ + 2π〉. We’ve found that for x ∈ Z =⇒ p ∈ S1

(this circle is called the Brillioun zone)!

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we’ll wrap the lattice

around a circle, in the following sense. Its position can take only the discrete

values x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we’ll

call the corresponding position eigenstates |n〉). Suppose further that the particle

lives on a circle, so that the site labelled x = (N + 1)a is the same as the site

labelled x = a. We can visualize this as in the figure:

In this case, the Hilbert space has finite dimension N .

Consider the following N × N matrix representation of a Hamiltonian operator
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(a is a constant):

H =
1

a2



2 −1 0 0 0 · · · 0 −1

−1 2 −1 0 0 · · · 0 0

0 −1 2 −1 0 · · · 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 2 −1

−1 0 0 0 0 · · · −1 2︸ ︷︷ ︸
N



N



(a) Convince yourself that this is equivalent to the following: Acting on an N -

dimensional Hilbert space with orthonormal basis {|n〉 , n = 1, . . . , N}, Ĥ
acts by

a2Ĥ |n〉 = 2 |n〉 − |n+ 1〉 − |n− 1〉 , with |N + 1〉 ' |1〉

that is, we consider the arguments of the ket to be integers modulo N .

I will set a = 1 until needed. Recall that Hnm ≡ 〈n|H |m〉. Our claim

above is compatible with Hnn = 2 by orthogonality as well as off diagonals

Hn+1,n = Hn−1,n = −1.

The top right and left corners are compatible by: H0,N = 2 〈0|N〉−〈0|N + 1〉−
〈0|N − 1〉 = −〈0|N + 1 = 0〉 = −1 making use of the periodicity. The rest

are appropriately 0.

(b) Show that Ĥ and T̂ (where T̂ is the ‘shift operator’ defined by T̂ : |n〉 7→
|n+ 1〉) can be simultaneously diagonalized.

HT |n〉 = H |n+ 1〉 = 2 |n+ 1〉 − |n+ 2〉 − |n〉 = T (2 |n〉 − |n+ 1〉 −
|n− 1〉) = TH |n〉 so there is a discrete translation invariance.

Consider again the state

|θ〉 =
1√
N

N∑
n=1

einθ |n〉 .

(c) Show that |θ〉 is an eigenstate of T̂ , for values of θ that are consistent with

the periodicity n ' n+N .

See solutions to homework 1.
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(d) What values of θ give different states |θ〉? [Recall that n is an integer.]

Once again see homework 1. Specifically θ = 2πk
N

for k ∈ {0, 1, · · · , N − 1}
Recalling the relationship between p and θ we arrive at the punchline that

for x ∈ ZN =⇒ p ∈ ZN
(e) Find the matrix elements of the unitary operator U which relates position

eigenstates |n〉 to momentum eigenstates |θ〉: Uθn ≡ 〈n|θ〉.
〈n|θ〉 = 1√

N

∑
n′ e

in′θ 〈n|n′〉 = 1√
N
einθ by orthogonality.

(f) Find the spectrum of Ĥ.

Draw a picture of ε(θ): plot the energy eigenvalues versus the ‘momentum’

θ.

Because [H,T ] = 0 we can diagonalize them in the same basis.

H |θ〉 = 1√
N

∑
n e

inθ(2 |n〉 − |n+ 1〉 − |n− 1〉) = 2 |θ〉 − e−iθ |θ〉 − eiθ |θ〉
Recall that cos θ = 1

2
(eiθ+e−iθ) and so consolidating terms: ε(θ) = 2+2 cos θ

(g) Show that the matrix above is an approximation to (minus) the 1-dimensional

Laplacian −∂2x. That is, show (using Taylor’s theorem) that

a2∂2xf(x) = −2f(x) + (f(x+ a) + f(x− a)) +O(a)

(where “O(a)” denotes terms proportional to the small quantity a).

Taylor Expansion: f(x + a) = f(x) + af ′(x) + 1
2
a2f ′′(x) + · · · so we can

write that f ′(x) = f(x+a)−f(x−a)
2a

f(x+ a) = f(x) + 1
2
(f(x+ a)− f(x− a)) + 1

2
a2f ′′(x)

a2f ′′(x) = f(x+ a) + f(x− a)− 2f(x)

Thus our form of H acting on |n〉 approximates a finite step differentiation.

(h) In the expression for the Hamiltonian, to restore units, I should have written:

Ĥ |n〉 =
~2

2m

1

a2
(2 |n〉 − |n+ 1〉 − |n− 1〉) , with |N + 1〉 ' |1〉
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where a is the distance between the sites, and m is the mass. Consider

the limit where a → 0, N → ∞ and look at the lowest-energy states (near

p = 0); show that we get the spectrum of a free particle on the line, ε = p2

2m
.

Based on the above we have that in the continuum limit H = −∂2x and thus

with the inclusion of the appropriate factors becomes the kinetic energy

operator p̂2

2m
in position space.

Since H has no potential terms this is the only contribution to the total

energy.

The highest momentum states would be the one’s associated with largest

values of θ and to whom the details of our regularization would matter most.
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