University of California at San Diego – Department of Physics – Prof. John McGreevy

# Physics 212C QM Spring 2023 Assignment 1

## Due 11:00am Tuesday, April 11, 2023

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me.
- To hand in your homework, please submit a pdf file through the course's canvas website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me if you have any trouble.

#### 1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency  $\omega$ . Consider the initial state

$$|\psi_{n,s}(0)\rangle \equiv \mathbf{T}(s)|n\rangle$$

where  $|n\rangle \equiv \frac{1}{\sqrt{n!}} (\mathbf{a}^{\dagger})^n |0\rangle$  is the *n*th excited state and  $\mathbf{T}(s) \equiv e^{-i\mathbf{P}s}$  is the displacement operator (**P** is the momentum operator).

Describe (plot it as a function of q for some n, t, s > 0) the time evolution of the probability distribution:  $\rho(q, t) = |\psi_{n,s}(q, t)|^2$  where  $\psi_{n,s}(q, t) \equiv \langle q|e^{-i\mathbf{H}t}|\psi_{n,s}(0)\rangle$ , and  $\langle q|$  is a position eigenstate. Does it keep its shape like it does for n = 0?

#### 2. Coherent states.

Consider a quantum harmonic oscillator with frequency  $\omega$ . The creation and annihilation operators  $\mathbf{a}^{\dagger}$  and  $\mathbf{a}$  satisfy the algebra

$$[\mathbf{a}, \mathbf{a}^{\dagger}] = 1$$

and the vacuum state  $|0\rangle$  satisfies  $\mathbf{a}|0\rangle=0$ . Coherent states are eigenstates of the annihilation operator:

$$\mathbf{a} | \alpha \rangle = \alpha | \alpha \rangle$$
.

(a) Show that

$$|\alpha\rangle = e^{-|\alpha|^2/2} e^{\alpha \mathbf{a}^{\dagger}} |0\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

is an eigenstate of **a** with eigenvalue  $\alpha$ . (**a** is not hermitian, so its eigenvalues need not be real.)

- (b) Coherent states with different  $\alpha$  are not orthogonal. (**a** is not hermitian, so its eigenstates need not be orthogonal.) Show that  $|\langle \alpha_1 | \alpha_2 \rangle|^2 = e^{-|\alpha_1 \alpha_2|^2}$ .
- (c) Compute the expectation value of the number operator  $\mathbf{n} = \mathbf{a}^{\dagger}\mathbf{a}$  in the coherent state  $|\alpha\rangle$ .
- (d) Time evolution acts nicely on coherent states. The hamiltonian is  $\mathbf{H} = \hbar\omega\left(\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\right)$ . Show that a coherent state evolves into a coherent state with an eigenvalue  $\alpha(t)$ :

$$e^{-\mathbf{i}\mathbf{H}t} |\alpha\rangle = e^{-\mathbf{i}\omega t/2} |\alpha(t)\rangle$$

where  $\alpha(t) = e^{-\mathbf{i}\omega t}\alpha$ .

(e) Show that the coherent states can be used to resolve the identity in the form

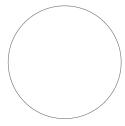
$$1 = \int \frac{d^2 \alpha}{\pi} |\alpha\rangle \langle \alpha|$$

where  $d^2\alpha \equiv d\alpha_1 d\alpha_2$  in terms of the real and imaginary parts of  $\alpha = \alpha_1 + \mathbf{i}\alpha_2$ . One way to do this is to relate this expression to  $\mathbb{1} = \sum_{n=0}^{\infty} |n\rangle \langle n|$ .

The following three problems form a triptych, on the subject of resolving the various infinities involved in the quantum mechanics of a particle on the real line. There are two such infinities: one is the fact that the real line goes on forever; this is resolved in problem 3. The other is the fact that in between any two points there are infinitely many points; this is resolved in problem 4. In problem 5 we resolve both to get a finite-dimensional Hilbert space.

#### 3. Particle on a circle.

Consider a particle which lives on a circle:



That is, its coordinate x takes values in  $[0, 2\pi R]$  and we identify  $x \simeq x + 2\pi R$ .

(a) Let's assume that the wavefunction of the particle is periodic in x:

$$\psi(x+2\pi R) = \psi(x) .$$

What set of values can its momentum (that is, eigenvalues of the operator  $\mathbf{p} = -i\hbar\partial_x$ ) take?

(b) Recall that the overall phase of the state vector is not physical data. This suggests the possibility that the wavefunction might not be periodic, but instead might acquire a phase when we go around the circle:

$$\psi(x + 2\pi R) = e^{i\varphi}\psi(x)$$

for some fixed  $\varphi$ . In this case what values does the momentum take?

### 4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete values  $x = na, n \in \mathbb{Z}$  where a is some unit of length and n is an integer. We'll call the corresponding position eigenstates  $|n\rangle$ . The Hilbert space is still infinite-dimensional, but at least we have in our hands a countably infinite basis.

In this problem we will determine: what is the spectrum of the momentum operator  $\mathbf{p}$  in this system?

(a) Consider the state

$$|\theta\rangle = \frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} e^{in\theta} |n\rangle.$$

Show that  $|\theta\rangle$  is an eigenstate of the translation operator  $\hat{T}$ , defined by

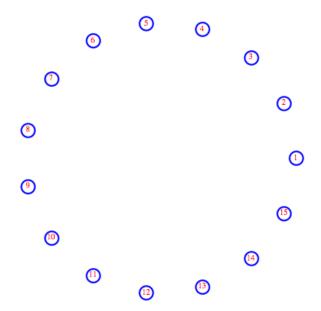
$$\hat{T} = \sum_{n \in \mathbb{Z}} |n+1\rangle \langle n|.$$

Why do I want to call  $\theta$  momentum?

(b) What range of values of  $\theta$  give different states  $|\theta\rangle$ ? [Recall that n is an integer.]

## 5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we'll wrap the lattice around a circle, in the following sense. Its position can take only the discrete values x = a, 2a, 3a, ..., Na (where, again, a is some unit of length and again we'll call the corresponding position eigenstates  $|n\rangle$ ). Suppose further that the particle lives on a circle, so that the site labelled x = (N + 1)a is the same as the site labelled x = a. We can visualize this as in the figure:



In this case, the Hilbert space has finite dimension N.

Consider the following  $N \times N$  matrix representation of a Hamiltonian operator (a is a constant):

$$H = \frac{1}{a^2} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 2 & -1 \\ -1 & 0 & 0 & 0 & 0 & \cdots & -1 & 2 \end{pmatrix} N$$

(a) Convince yourself that this is equivalent to the following: Acting on an N-dimensional Hilbert space with orthonormal basis  $\{|n\rangle, n=1,\ldots,N\}$ ,  $\hat{H}$  acts by

$$a^2 \hat{H} |n\rangle = 2 |n\rangle - |n+1\rangle - |n-1\rangle$$
, with  $|N+1\rangle \simeq |1\rangle$ 

that is, we consider the arguments of the ket to be integers modulo N.

(b) Show that  $\hat{H}$  and  $\hat{T}$  (where  $\hat{T}$  is the 'shift operator' defined by  $\hat{T}:|n\rangle\mapsto |n+1\rangle$ ) can be simultaneously diagonalized.

Consider again the state

$$|\theta\rangle = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{in\theta} |n\rangle.$$

- (c) Show that  $|\theta\rangle$  is an eigenstate of  $\hat{T}$ , for values of  $\theta$  that are consistent with the periodicity  $n \simeq n + N$ .
- (d) What values of  $\theta$  give different states  $|\theta\rangle$ ? [Recall that n is an integer.]
- (e) Find the matrix elements of the unitary operator **U** which relates position eigenstates  $|n\rangle$  to momentum eigenstates  $|\theta\rangle$ :  $U_{\theta n} \equiv \langle n|\theta\rangle$ .
- (f) Find the spectrum of  $\hat{H}$ . Draw a picture of  $\epsilon(\theta)$ : plot the energy eigenvalues versus the 'momentum'  $\theta$ .
- (g) Show that the matrix above is an approximation to (minus) the 1-dimensional Laplacian  $-\partial_x^2$ . That is, show (using Taylor's theorem) that

$$a^{2}\partial_{x}^{2}f(x) = -2f(x) + (f(x+a) + f(x-a)) + \mathcal{O}(a)$$

(where " $\mathcal{O}(a)$ " denotes terms proportional to the small quantity a).

(h) In the expression for the Hamiltonian, to restore units, I should have written:

$$\hat{H}|n\rangle = \frac{\hbar^2}{2m} \frac{1}{a^2} (2|n\rangle - |n+1\rangle - |n-1\rangle), \text{ with } |N+1\rangle \simeq |1\rangle$$

where a is the distance between the sites, and m is the mass. Consider the limit where  $a \to 0, N \to \infty$  and look at the lowest-energy states (near p = 0); show that we get the spectrum of a free particle on the line,  $\epsilon = \frac{p^2}{2m}$ .