University of California at San Diego - Department of Physics - Prof. John McGreevy Physics $\underset{\text { Assignment } 1}{\text { 212C QM Spring } 2023}$

Due 11:00am Tuesday, April 11, 2023

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me.
- To hand in your homework, please submit a pdf file through the course's canvas website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me if you have any trouble.

1. Brain-warmer: oscillation of excited oscillator states.

Consider a 1d harmonic oscillator of frequency ω. Consider the initial state

$$
\left|\psi_{n, s}(0)\right\rangle \equiv \mathbf{T}(s)|n\rangle
$$

where $|n\rangle \equiv \frac{1}{\sqrt{n!}}\left(\mathbf{a}^{\dagger}\right)^{n}|0\rangle$ is the nth excited state and $\mathbf{T}(s) \equiv e^{-\mathbf{i P} s}$ is the displacement operator (\mathbf{P} is the momentum operator).

Describe (plot it as a function of q for some $n, t, s>0$) the time evolution of the probability distribution: $\rho(q, t)=\left|\psi_{n, s}(q, t)\right|^{2}$ where $\psi_{n, s}(q, t) \equiv\langle q| e^{-\mathbf{i} \mathbf{H} t}\left|\psi_{n, s}(0)\right\rangle$, and $\langle q|$ is a position eigenstate. Does it keep its shape like it does for $n=0$?

2. Coherent states.

Consider a quantum harmonic oscillator with frequency ω. The creation and annihilation operators \mathbf{a}^{\dagger} and a satisfy the algebra

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1
$$

and the vacuum state $|0\rangle$ satisfies a $|0\rangle=0$. Coherent states are eigenstates of the annihilation operator:

$$
\mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle .
$$

(a) Show that

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}}|0\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

is an eigenstate of a with eigenvalue α. (\mathbf{a} is not hermitian, so its eigenvalues need not be real.)
(b) Coherent states with different α are not orthogonal. (a is not hermitian, so its eigenstates need not be orthogonal.) Show that $\left|\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle\right|^{2}=e^{-\left|\alpha_{1}-\alpha_{2}\right|^{2}}$.
(c) Compute the expectation value of the number operator $\mathbf{n}=\mathbf{a}^{\dagger} \mathbf{a}$ in the coherent state $|\alpha\rangle$.
(d) Time evolution acts nicely on coherent states. The hamiltonian is $\mathbf{H}=$ $\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2}\right)$. Show that a coherent state evolves into a coherent state with an eigenvalue $\alpha(t)$:

$$
e^{-\mathbf{i} \mathbf{H} t}|\alpha\rangle=e^{-\mathbf{i} \omega t / 2}|\alpha(t)\rangle
$$

where $\alpha(t)=e^{-\mathrm{i} \omega t} \alpha$.
(e) Show that the coherent states can be used to resolve the identity in the form

$$
\mathbb{1}=\int \frac{d^{2} \alpha}{\pi}|\alpha\rangle\langle\alpha|
$$

where $d^{2} \alpha \equiv d \alpha_{1} d \alpha_{2}$ in terms of the real and imaginary parts of $\alpha=\alpha_{1}+\mathbf{i} \alpha_{2}$. One way to do this is to relate this expression to $\mathbb{1}=\sum_{n=0}^{\infty}|n\rangle\langle n|$.

The following three problems form a triptych, on the subject of resolving the various infinities involved in the quantum mechanics of a particle on the real line. There are two such infinities: one is the fact that the real line goes on forever; this is resolved in problem 3. The other is the fact that in between any two points there are infinitely many points; this is resolved in problem 4. In problem 5 we resolve both to get a finite-dimensional Hilbert space.

3. Particle on a circle.

Consider a particle which lives on a circle:

That is, its coordinate x takes values in $[0,2 \pi R]$ and we identify $x \simeq x+2 \pi R$.
(a) Let's assume that the wavefunction of the particle is periodic in x :

$$
\psi(x+2 \pi R)=\psi(x)
$$

What set of values can its momentum (that is, eigenvalues of the operator $\mathbf{p}=-i \hbar \partial_{x}$) take?
(b) Recall that the overall phase of the state vector is not physical data. This suggests the possibility that the wavefunction might not be periodic, but instead might acquire a phase when we go around the circle:

$$
\psi(x+2 \pi R)=e^{i \varphi} \psi(x)
$$

for some fixed φ. In this case what values does the momentum take?

4. Particle on a lattice.

Now consider a particle which lives on a lattice: its position can take only the discrete values $x=n a, n \in \mathbb{Z}$ where a is some unit of length and n is an integer. We'll call the corresponding position eigenstates $|n\rangle$. The Hilbert space is still infinite-dimensional, but at least we have in our hands a countably infinite basis. In this problem we will determine: what is the spectrum of the momentum operator \mathbf{p} in this system?
(a) Consider the state

$$
|\theta\rangle=\frac{1}{\sqrt{N}} \sum_{n \in \mathbb{Z}} e^{i n \theta}|n\rangle
$$

Show that $|\theta\rangle$ is an eigenstate of the translation operator \hat{T}, defined by

$$
\hat{T}=\sum_{n \in \mathbb{Z}}|n+1\rangle\langle n| .
$$

Why do I want to call θ momentum?
(b) What range of values of θ give different states $|\theta\rangle$? [Recall that n is an integer.]

5. Discrete Laplacian.

Consider again a particle which lives on a lattice, but now we'll wrap the lattice around a circle, in the following sense. Its position can take only the discrete values $x=a, 2 a, 3 a, \ldots, N a$ (where, again, a is some unit of length and again we'll call the corresponding position eigenstates $|n\rangle$). Suppose further that the particle lives on a circle, so that the site labelled $x=(N+1) a$ is the same as the site labelled $x=a$. We can visualize this as in the figure:

In this case, the Hilbert space has finite dimension N.
Consider the following $N \times N$ matrix representation of a Hamiltonian operator (a is a constant):

$$
H=\frac{1}{a^{2}}\left(\begin{array}{cccccccc}
\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & \cdots & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 2 & -1 \\
-1 & 0 & 0 & 0 & 0 & \cdots & -1 & 2
\end{array} & \underbrace{}_{N} N)
\end{array}\right.
$$

(a) Convince yourself that this is equivalent to the following: Acting on an N dimensional Hilbert space with orthonormal basis $\{|n\rangle, n=1, \ldots, N\}, \hat{H}$ acts by

$$
a^{2} \hat{H}|n\rangle=2|n\rangle-|n+1\rangle-|n-1\rangle, \quad \text { with }|N+1\rangle \simeq|1\rangle
$$

that is, we consider the arguments of the ket to be integers modulo N.
(b) Show that \hat{H} and \hat{T} (where \hat{T} is the 'shift operator' defined by $\hat{T}:|n\rangle \mapsto$ $|n+1\rangle)$ can be simultaneously diagonalized.

Consider again the state

$$
|\theta\rangle=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} e^{i n \theta}|n\rangle
$$

(c) Show that $|\theta\rangle$ is an eigenstate of \hat{T}, for values of θ that are consistent with the periodicity $n \simeq n+N$.
(d) What values of θ give different states $|\theta\rangle$? [Recall that n is an integer.]
(e) Find the matrix elements of the unitary operator \mathbf{U} which relates position eigenstates $|n\rangle$ to momentum eigenstates $|\theta\rangle: U_{\theta n} \equiv\langle n \mid \theta\rangle$.
(f) Find the spectrum of \hat{H}.

Draw a picture of $\epsilon(\theta)$: plot the energy eigenvalues versus the 'momentum' θ.
(g) Show that the matrix above is an approximation to (minus) the 1-dimensional Laplacian $-\partial_{x}^{2}$. That is, show (using Taylor's theorem) that

$$
a^{2} \partial_{x}^{2} f(x)=-2 f(x)+(f(x+a)+f(x-a))+\mathcal{O}(a)
$$

(where " $\mathcal{O}(a)$ " denotes terms proportional to the small quantity a).
(h) In the expression for the Hamiltonian, to restore units, I should have written:

$$
\hat{H}|n\rangle=\frac{\hbar^{2}}{2 m} \frac{1}{a^{2}}(2|n\rangle-|n+1\rangle-|n-1\rangle), \quad \text { with }|N+1\rangle \simeq|1\rangle
$$

where a is the distance between the sites, and m is the mass. Consider the limit where $a \rightarrow 0, N \rightarrow \infty$ and look at the lowest-energy states (near $p=0$); show that we get the spectrum of a free particle on the line, $\epsilon=\frac{p^{2}}{2 m}$.

