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1. Brain-warmer: oscillator algebra. Convince yourself that an operator O
made of creation and annihilation operators ak and a†k for various k commutes

with the number operator
∑

kNk if and only if it has the same number of as as

a†s.

2. Brain-warmer: Heisenberg time evolution of the harmonic chain. Recall

the expression for qn in terms of creation and annihilation operators given in

the lecture notes. Check that the expression for pn in terms of creation and

annihilation operators is consistent with the Heisenberg equations of motion

pn = mq̇n =
im

~
[H,qn].

(That is, evaluate the right hand side of this expression using the algebra of ak
and a†k.

We have

qn =

√
~

2Nm

∑
k

1
√
ωk

(
eikxak + e−ikxa†k

)
+

1√
N
q0

and

H0 =
∑
k

~ωk
(
a†kak +

1

2

)
+

p2
0

2m
.

Therefore

pn = mq̇n =
im

~

(∑
k

~ωk[a†kak,qn] + [
p2

0

2m
,qn]

)
In the second term, only the q0 part contributes because modes of different k are

orthogonal.

pn =
im

~
∑
k

∑
k′

~ωk
√

~
2Nmωk′

[a†kak, e
ik′xak′ + e−ik

′xa†k′ ]︸ ︷︷ ︸
=(−akeikx+a†ke

−ikx)δk,k′

+
im

~
√
N

[
p2

0

2m
, q0]︸ ︷︷ ︸

=−ip0/m

(1)

This indeed gives

pn =
1

i

√
~m
2N

∑
k

√
ωk

(
eikxak − e−ikxa†k

)
+

1√
N
p0.
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3. Entropy and thermodynamics. Consider a quantum system with hamiltonian

H and Hilbert space H. Its behavior in thermal equilibrium at temperature T

can be described using the thermal density matrix

ρβ ≡
1

Z
e−βH

where β ≡ 1
T

specifies the temperature and Z is a normalization factor. (We

can think about this as the density matrix resulting from coupling the system

to a heat bath and tracing out the Hilbert space of the heat bath.) Expectation

values are computed by 〈O〉 ≡ trρβO.

(a) Find a formal expression for Z by demanding that ρβ is normalized appro-

priately. This is called the partition function.

tr(ρβ) = 1

1

Z
tr(e−βH) = 1

Z = tr(e−βH) =
∑
Em

e−βEm

(b) Recall that the von Neumann entropy of a density matrix is defined as

S[ρ] = −trρ log ρ.

Show that the von Neumann entropy of ρβ can be written as

Sβ = E/T + logZ

where E ≡ 〈H〉 is the expectation value for the energy. Convince yourself

that this is same as the thermal entropy.

S = −tr(ρβ log(ρβ))

S = −tr( 1

Z
e−βH log(

e−βH

z
))

S = tr(
1

Z
e−βHβH +

1

Z
e−βH logZ)

S = βtr(
1

Z
e−βHH) +

tr(e−βH log(Z))

tr(e−βH)

S = β〈H〉+ logZ

S = E/T + logZ

2



(c) Evaluate Z and E and the heat capacity C = ∂TE for the case where the

system is a simple harmonic oscillator

H = span{|n〉 , n = 0, 1, 2...}, H = ~ω
(
n +

1

2

)
with n |n〉 = n |n〉.
The matrix elements of H are

Hn′n = 〈n′|H |n〉 = ~ω(〈n′|n |n〉+
1

2
〈n′|n〉)

Hn′n = ~ω(n+
1

2
)δn′n

Z = tr(e−βH)

Z =
∑
n

〈n| e−βH |n〉

Z =
∑
n

e−βHnn = e+β~ω 1
2

∞∑
n=0

e−β~ωn

Letting x ≡ e−β~ω, we have a geometric series:

Z = x−
1
2

∞∑
n=0

xn = x1/2 1

1− x
.

Next we find E

E = 〈H〉 = tr(ρH)

E = tr(
1

Z
e−βHH)

E =
1

Z

∑
n

〈n| (e−βHH) |n〉

E =
1

Z

∑
n

Ene
−βHnn =

1

Z
~ω

∞∑
n=0

(n+ 1/2)xn+1/2 =
1

Z
~ωx∂x

(
∞∑
n=0

xn

)
where x ≡ e−βω.

E = ~ω
1

Z
x∂xZ = ~ω

1

2

1 + x

(1− x)2
= ~ω

1

2

1 + x

1− x
.
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It looks like this:

(d) Now evaluate the low-temperature equilibrium heat capacity for a harmonic

mattress (the d-dimensional version of the harmonic chain). That is, find the

heat capacity for a collection of harmonic oscillators labelled by wavenumber
~k in d dimensions,

H =
∑
k

~ωk
(
a†kak +

1

2

)
with dispersion relation ωk = vs|k|.
In terms of the normal modes, this is just a collection of oscillators labelled

by k, with frequency ωk. The partition function is Z =
∏

k Zk so logZ =∑
k logZk and the expected energy is

〈H〉 = −∂β logZ =
∑
k

Ek, (2)

with Ek = ~ωk 1
2

1+e−βωk

1−e−βωk . The heat capacity is similarly a sum over k.

In the thermodynamic limit, the sum over k becomes an integral
∑

k  
Ld
∫

d̄dk. If we are just interested in temperatures small compared to the

energy scales associated with the lattice (i.e. the bandwidth), we can approx-

imate the dispersion as linear. This is because a mode doesn’t contribute

to the heat capacity if its frequency is much bigger than the temperature.
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Then the heat capacity is

CV =
∑
k

(ωk
T

)2 e−ωk/T

(1− e−ωk/T )
2 (3)

=

(
1

T

)2

Ld
∫

d̄dk︸ ︷︷ ︸
=(2π)−d

∫
dd−1Ωkd−1dk

ω2
k

e−ωk/T

(1− e−ωk/T )
2 (4)

=

(
1

T

)2

LdKd−1v
d
s

∫
dωωd+1f(ω/T ) (5)

= vdsT
dLdKd−1

∫
dxxd+1f(x)︸ ︷︷ ︸

=ζ(d)d!

. (6)

Here Kd ≡ Ωd
(2π)d

where Ωd is the volume of the unit d-sphere. In the last step

we extracted the temperature dependence of the integral by scaling, i.e. just

be redefining the integration variable to leave behind an numerical integral

independent of everything except the dimension of space. The important

conclusion is that the specific heat cV = CV /L
d ∝ T d.

4. Gaussian identity. Show that for a gaussian quantum system〈
eiKq

〉
= e−A(K)〈q2〉

and determine A(K). Here 〈...〉 ≡ 〈0| ... |0〉. Here by ‘gaussian’ I mean that H

contains only quadratic and linear terms in both q and its conjugate variable p

(but for the formula to be exactly correct as stated you must assume H contains

only terms quadratic in q and p; for further entertainment fix the formula for

the case with linear terms in H).

Versions of this problem appear in Peskin problem 11.1a) and in Green-Schwarz-

Witten volume 1 page 429.

One can do it by algebra (as in GSW), using Campbell-Baker-Hausdorff to put

the annihilation operators on the right and the creation operators on the left:

eα(a+a†) = eα
2/2eαa

†
eαa .

The vacuum expectation value of the RHS is eα
2/2.

But it is, I think, more illuminating to do it by path integral. (In the case when

there are indices, Kq = Kαqα = K ·q, this technique is worth the effort. And this

method makes it manifest that it is Kα 〈qαqβ〉Kβ that appears in the exponent

on the RHS.) The path integral representation is〈
eiKq

〉
=

1

Z

∫ ∏
i

dqi e
−qiDijqjeiKq0 (7)
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with Z =
∫ ∏

i dqi e
−qiDijqj . Here i, j are discrete time labels, and Dij is the

matrix which discretizes the action. Repeated indices are summed. A word

about where this formula comes from: the vacuum can be prepared by starting

in an arbitrary state and acting with e−TH for some large T , and then normal-

izing (as usual when discussing path integrals, it’s best to not worry about the

normalization and only ask questions which don’t depend on it),

|0〉 = N e−HT |any〉 .

To see this, just expand in the energy eigenbasis. This ‘imaginary time evolution

operator’ e−HT has a path integral representation just like the real time operator,

by nearly the same calculation

e−HT =

∫
[Dq]e−

∫ 0
−T dτL(q(τ),q̇(τ)).

Doing the same thing to prepare 〈0|, making a sandwich of eq(0)·k = e
∫
dτq(τ)·kδ(τ),

and taking T → ∞ we can forget about the arbitrary states at the end, and we

arrive at (7).

Once we arrive at this path integral representation, it can be evaluated in two

steps: First, we can absorb the insertion into the action:

e−
1
2
qiDijqjeiKq0 = e−

1
2
qiDijqj+iKq0 = e−

1
2
q̃iDij q̃je

1
2
JiD

−1
ij Jj

with Jj = −iKδj,0, and D−1 is the inverse of the kinetic matrix, i.e. the propa-

gator:

〈qiqj〉 = D−1
ij .

So, plugging in the value of J , we arrive at the answer:〈
eiKq

〉
= e−

1
2
K2D−1

00 = e−
1
2
K2〈q0q0〉 = e−

1
2
K2〈q2〉.
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