University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2023
 Assignment 2 - Solutions

Due 12:30pm Tuesday, April 18, 2023

1. Brain-warmer: oscillator algebra. Convince yourself that an operator \mathcal{O} made of creation and annihilation operators \mathbf{a}_{k} and \mathbf{a}_{k}^{\dagger} for various k commutes with the number operator $\sum_{k} \mathbf{N}_{k}$ if and only if it has the same number of as as $a^{\dagger} \mathrm{s}$.
2. Brain-warmer: Heisenberg time evolution of the harmonic chain. Recall the expression for \mathbf{q}_{n} in terms of creation and annihilation operators given in the lecture notes. Check that the expression for \mathbf{p}_{n} in terms of creation and annihilation operators is consistent with the Heisenberg equations of motion

$$
\mathbf{p}_{n}=m \dot{\mathbf{q}}_{n}=\frac{\mathbf{i} m}{\hbar}\left[\mathbf{H}, \mathbf{q}_{n}\right] .
$$

(That is, evaluate the right hand side of this expression using the algebra of \mathbf{a}_{k} and \mathbf{a}_{k}^{\dagger}.
We have

$$
\mathbf{q}_{n}=\sqrt{\frac{\hbar}{2 N m}} \sum_{k} \frac{1}{\sqrt{\omega_{k}}}\left(e^{\mathbf{i} k x} \mathbf{a}_{k}+e^{-\mathbf{i} k x} \mathbf{a}_{k}^{\dagger}\right)+\frac{1}{\sqrt{N}} \mathbf{q}_{0}
$$

and

$$
\mathbf{H}_{0}=\sum_{k} \hbar \omega_{k}\left(\mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}+\frac{1}{2}\right)+\frac{p_{0}^{2}}{2 m} .
$$

Therefore

$$
\mathbf{p}_{n}=m \dot{\mathbf{q}}_{n}=\frac{\mathbf{i} m}{\hbar}\left(\sum_{k} \hbar \omega_{k}\left[\mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}, \mathbf{q}_{n}\right]+\left[\frac{p_{0}^{2}}{2 m}, \mathbf{q}_{n}\right]\right)
$$

In the second term, only the \mathbf{q}_{0} part contributes because modes of different k are orthogonal.

$$
\begin{equation*}
\mathbf{p}_{n}=\frac{\mathbf{i} m}{\hbar} \sum_{k} \sum_{k^{\prime}} \hbar \omega_{k} \sqrt{\frac{\hbar}{2 N m \omega_{k^{\prime}}}} \underbrace{\left[\mathbf{a}_{k}^{\dagger} \mathbf{a}_{k}, e^{\mathbf{i} k^{\prime} x} \mathbf{a}_{k^{\prime}}+e^{-\mathbf{i} k^{\prime} x} \mathbf{a}_{k^{\prime}}^{\dagger}\right]}_{=\left(-\mathbf{a}_{k} e^{\mathbf{i} k x}+\mathbf{a}_{k}^{\dagger} e^{-\mathbf{i} k x}\right) \delta_{k, k^{\prime}}}+\frac{\mathbf{i} m}{\hbar \sqrt{N}} \underbrace{\left[\frac{p_{0}^{2}}{2 m}, q_{0}\right]}_{=-\mathbf{i} p_{0} / m} \tag{1}
\end{equation*}
$$

This indeed gives

$$
\mathbf{p}_{n}=\frac{1}{\mathrm{i}} \sqrt{\frac{\hbar m}{2 N}} \sum_{k} \sqrt{\omega_{k}}\left(e^{\mathrm{i} k x} \mathbf{a}_{k}-e^{-\mathrm{i} k x} \mathbf{a}_{k}^{\dagger}\right)+\frac{1}{\sqrt{N}} \mathbf{p}_{0} .
$$

3. Entropy and thermodynamics. Consider a quantum system with hamiltonian \mathbf{H} and Hilbert space \mathcal{H}. Its behavior in thermal equilibrium at temperature T can be described using the thermal density matrix

$$
\boldsymbol{\rho}_{\beta} \equiv \frac{1}{Z} e^{-\beta \mathbf{H}}
$$

where $\beta \equiv \frac{1}{T}$ specifies the temperature and Z is a normalization factor. (We can think about this as the density matrix resulting from coupling the system to a heat bath and tracing out the Hilbert space of the heat bath.) Expectation values are computed by $\langle\mathcal{O}\rangle \equiv \operatorname{tr} \boldsymbol{\rho}_{\beta} \mathcal{O}$.
(a) Find a formal expression for Z by demanding that $\boldsymbol{\rho}_{\beta}$ is normalized appropriately. This is called the partition function.

$$
\begin{gathered}
\operatorname{tr}\left(\boldsymbol{\rho}_{\beta}\right)=1 \\
\frac{1}{Z} \operatorname{tr}\left(e^{-\beta H}\right)=1 \\
Z=\operatorname{tr}\left(e^{-\beta H}\right)=\sum_{E_{m}} e^{-\beta E_{m}}
\end{gathered}
$$

(b) Recall that the von Neumann entropy of a density matrix is defined as

$$
S[\rho]=-\operatorname{tr} \rho \log \rho .
$$

Show that the von Neumann entropy of $\boldsymbol{\rho}_{\beta}$ can be written as

$$
S_{\beta}=E / T+\log Z
$$

where $E \equiv\langle\mathbf{H}\rangle$ is the expectation value for the energy. Convince yourself that this is same as the thermal entropy.

$$
\begin{gathered}
S=-\operatorname{tr}\left(\boldsymbol{\rho}_{\beta} \log \left(\boldsymbol{\rho}_{\beta}\right)\right) \\
S=-\operatorname{tr}\left(\frac{1}{Z} e^{-\beta H} \log \left(\frac{e^{-\beta H}}{z}\right)\right) \\
S=\operatorname{tr}\left(\frac{1}{Z} e^{-\beta H} \beta H+\frac{1}{Z} e^{-\beta H} \log Z\right) \\
S=\beta \operatorname{tr}\left(\frac{1}{Z} e^{-\beta H} H\right)+\frac{\operatorname{tr}\left(e^{-\beta H} \log (Z)\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \\
S=\beta\langle H\rangle+\log Z \\
S=E / T+\log Z
\end{gathered}
$$

(c) Evaluate Z and E and the heat capacity $C=\partial_{T} E$ for the case where the system is a simple harmonic oscillator

$$
\mathcal{H}=\operatorname{span}\{|n\rangle, n=0,1,2 \ldots\}, \quad \mathbf{H}=\hbar \omega\left(\mathbf{n}+\frac{1}{2}\right)
$$

with $\mathbf{n}|n\rangle=n|n\rangle$.
The matrix elements of H are

$$
\begin{gathered}
H_{n^{\prime} n}=\left\langle n^{\prime}\right| H|n\rangle=\hbar \omega\left(\left\langle n^{\prime}\right| \mathbf{n}|n\rangle+\frac{1}{2}\left\langle n^{\prime} \mid n\right\rangle\right) \\
H_{n^{\prime} n}=\hbar \omega\left(n+\frac{1}{2}\right) \delta_{n^{\prime} n} \\
Z=\operatorname{tr}\left(e^{-\beta H}\right) \\
Z=\sum_{n}\langle n| e^{-\beta H}|n\rangle \\
Z=\sum_{n} e^{-\beta H_{n n}}=e^{+\beta \hbar \omega \frac{1}{2}} \sum_{n=0}^{\infty} e^{-\beta \hbar \omega n}
\end{gathered}
$$

Letting $x \equiv e^{-\beta \hbar \omega}$, we have a geometric series:

$$
Z=x^{-\frac{1}{2}} \sum_{n=0}^{\infty} x^{n}=x^{1 / 2} \frac{1}{1-x}
$$

Next we find E

$$
\begin{gathered}
E=\langle H\rangle=\operatorname{tr}(\boldsymbol{\rho} H) \\
E=\operatorname{tr}\left(\frac{1}{Z} e^{-\beta H} H\right) \\
E=\frac{1}{Z} \sum_{n}\langle n|\left(e^{-\beta H} H\right)|n\rangle \\
E=\frac{1}{Z} \sum_{n} E_{n} e^{-\beta H_{n n}}=\frac{1}{Z} \hbar \omega \sum_{n=0}^{\infty}(n+1 / 2) x^{n+1 / 2}=\frac{1}{Z} \hbar \omega x \partial_{x}\left(\sum_{n=0}^{\infty} x^{n}\right)
\end{gathered}
$$

where $x \equiv e^{-\beta \omega}$.

$$
E=\hbar \omega \frac{1}{Z} x \partial_{x} Z=\hbar \omega \frac{1}{2} \frac{1+x}{(1-x)^{2}}=\hbar \omega \frac{1}{2} \frac{1+x}{1-x}
$$

It looks like this:

(d) Now evaluate the low-temperature equilibrium heat capacity for a harmonic mattress (the d-dimensional version of the harmonic chain). That is, find the heat capacity for a collection of harmonic oscillators labelled by wavenumber \vec{k} in d dimensions,

$$
\mathbf{H}=\sum_{k} \hbar \omega_{k}\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right)
$$

with dispersion relation $\omega_{k}=v_{s}|k|$.
In terms of the normal modes, this is just a collection of oscillators labelled by k, with frequency ω_{k}. The partition function is $Z=\prod_{k} Z_{k}$ so $\log Z=$ $\sum_{k} \log Z_{k}$ and the expected energy is

$$
\begin{equation*}
\langle H\rangle=-\partial_{\beta} \log Z=\sum_{k} E_{k}, \tag{2}
\end{equation*}
$$

with $E_{k}=\hbar \omega_{k} \frac{1}{2} \frac{1+e^{-\beta \omega_{k}}}{1-e^{-\beta \omega_{k}}}$. The heat capacity is similarly a sum over k.
In the thermodynamic limit, the sum over k becomes an integral $\sum_{k} \rightsquigarrow$ $L^{d} \int \mathrm{~d}^{d} k$. If we are just interested in temperatures small compared to the energy scales associated with the lattice (i.e. the bandwidth), we can approximate the dispersion as linear. This is because a mode doesn't contribute to the heat capacity if its frequency is much bigger than the temperature.

Then the heat capacity is

$$
\begin{align*}
C_{V} & =\sum_{k}\left(\frac{\omega_{k}}{T}\right)^{2} \frac{e^{-\omega_{k} / T}}{\left(1-e^{-\omega_{k} / T}\right)^{2}} \tag{3}\\
& =\left(\frac{1}{T}\right)^{2} L^{d} \underbrace{\int \mathrm{~d}^{d} k}_{=(2 \pi)^{-d} \int d^{d-1} \Omega k^{d-1} d k} \omega_{k}^{2} \frac{e^{-\omega_{k} / T}}{\left(1-e^{-\omega_{k} / T}\right)^{2}} \tag{4}\\
& =\left(\frac{1}{T}\right)^{2} L^{d} K_{d-1} v_{s}^{d} \int d \omega \omega^{d+1} f(\omega / T) \tag{5}\\
& =v_{s}^{d} T^{d} L^{d} K_{d-1} \underbrace{\int d x x^{d+1} f(x)}_{=\zeta(d) d!} \tag{6}
\end{align*}
$$

Here $K_{d} \equiv \frac{\Omega_{d}}{(2 \pi)^{d}}$ where Ω_{d} is the volume of the unit d-sphere. In the last step we extracted the temperature dependence of the integral by scaling, i.e. just be redefining the integration variable to leave behind an numerical integral independent of everything except the dimension of space. The important conclusion is that the specific heat $c_{V}=C_{V} / L^{d} \propto T^{d}$.
4. Gaussian identity. Show that for a gaussian quantum system

$$
\left\langle e^{\mathbf{i} K \mathbf{q}}\right\rangle=e^{-A(K)\left\langle\mathbf{q}^{2}\right\rangle}
$$

and determine $A(K)$. Here $\langle\ldots\rangle \equiv\langle 0| \ldots|0\rangle$. Here by 'gaussian' I mean that \mathbf{H} contains only quadratic and linear terms in both \mathbf{q} and its conjugate variable \mathbf{p} (but for the formula to be exactly correct as stated you must assume \mathbf{H} contains only terms quadratic in \mathbf{q} and \mathbf{p}; for further entertainment fix the formula for the case with linear terms in \mathbf{H}).

Versions of this problem appear in Peskin problem 11.1a) and in Green-SchwarzWitten volume 1 page 429.
One can do it by algebra (as in GSW), using Campbell-Baker-Hausdorff to put the annihilation operators on the right and the creation operators on the left:

$$
e^{\alpha\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)}=e^{\alpha^{2} / 2} e^{\alpha \mathbf{a}^{\dagger}} e^{\alpha \mathbf{a}}
$$

The vacuum expectation value of the RHS is $e^{\alpha^{2} / 2}$.
But it is, I think, more illuminating to do it by path integral. (In the case when there are indices, $K q=K_{\alpha} q_{\alpha}=K \cdot q$, this technique is worth the effort. And this method makes it manifest that it is $K_{\alpha}\left\langle q_{\alpha} q_{\beta}\right\rangle K_{\beta}$ that appears in the exponent on the RHS.) The path integral representation is

$$
\begin{equation*}
\left\langle e^{\mathbf{i} K \mathbf{q}}\right\rangle=\frac{1}{Z} \int \prod_{i} d q_{i} e^{-q_{i} D_{i j} q_{j}} e^{\mathbf{i} K q_{0}} \tag{7}
\end{equation*}
$$

with $Z=\int \prod_{i} d q_{i} e^{-q_{i} D_{i j} q_{j}}$. Here i, j are discrete time labels, and $D_{i j}$ is the matrix which discretizes the action. Repeated indices are summed. A word about where this formula comes from: the vacuum can be prepared by starting in an arbitrary state and acting with $e^{-T H}$ for some large T, and then normalizing (as usual when discussing path integrals, it's best to not worry about the normalization and only ask questions which don't depend on it),

$$
\left.|0\rangle=\mathcal{N} e^{-\mathbf{H} T} \mid \text { any }\right\rangle
$$

To see this, just expand in the energy eigenbasis. This 'imaginary time evolution operator' $e^{-\mathbf{H} T}$ has a path integral representation just like the real time operator, by nearly the same calculation

$$
e^{-\mathbf{H} T}=\int[D q] e^{-\int_{-T}^{0} d \tau L(q(\tau), \dot{q}(\tau))}
$$

Doing the same thing to prepare $\langle 0|$, making a sandwich of $e^{q(0) \cdot k}=e^{\int d \tau q(\tau) \cdot k \delta(\tau)}$, and taking $T \rightarrow \infty$ we can forget about the arbitrary states at the end, and we arrive at (7).

Once we arrive at this path integral representation, it can be evaluated in two steps: First, we can absorb the insertion into the action:

$$
e^{-\frac{1}{2} q_{i} D_{i j} q_{j}} e^{\mathbf{i} K q_{0}}=e^{-\frac{1}{2} q_{i} D_{i j} q_{j}+\mathbf{i} K q_{0}}=e^{-\frac{1}{2} \tilde{q}_{i} D_{i j} \tilde{q}_{j}} e^{\frac{1}{2} J_{i} D_{i j}^{-1} J_{j}}
$$

with $J_{j}=-\mathbf{i} K \delta_{j, 0}$, and D^{-1} is the inverse of the kinetic matrix, i.e. the propagator:

$$
\left\langle q_{i} q_{j}\right\rangle=D_{i j}^{-1}
$$

So, plugging in the value of J, we arrive at the answer:

$$
\left\langle e^{\mathbf{i} K \mathbf{q}}\right\rangle=e^{-\frac{1}{2} K^{2} D_{00}^{-1}}=e^{-\frac{1}{2} K^{2}\left\langle q_{0} q_{0}\right\rangle}=e^{-\frac{1}{2} K^{2}\left\langle\mathbf{q}^{2}\right\rangle} .
$$

