University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 212C QM Spring 2023 Assignment 4 - Solutions

Due 11:00am Wednesday, May 3, 2023

1. Commutation relations of creation operators for general one-particle states. Show that

$$
\mathbf{a}\left(\varphi_{1}\right) \mathbf{a}^{\dagger}\left(\varphi_{2}\right)-\zeta \mathbf{a}^{\dagger}\left(\varphi_{2}\right) \mathbf{a}\left(\varphi_{1}\right)=\left\langle\varphi_{2} \mid \varphi_{1}\right\rangle,
$$

where these objects are as defined in the lecture notes.

$$
\left[\mathbf{a}\left(\varphi_{1}\right), \mathbf{a}^{\dagger}\left(\varphi_{2}\right)\right]_{\zeta}=\sum_{k_{1}, k_{2}}\left[\mathbf{a}_{k_{1}}, \mathbf{a}_{k_{2}}\right]_{\zeta} \varphi_{1}\left(k_{1}\right) \varphi_{2}\left(k_{2}\right)^{\star}=\sum_{k} \varphi_{1}(k) \varphi_{2}(k)^{\star}=\left\langle\varphi_{2} \mid \varphi_{1}\right\rangle .
$$

2. Fermion creation and annihilation algebra.

Consider a single fermion mode c. We showed in lecture that the associated Hilbert space is two-dimensional, and is spanned by

$$
|0\rangle, \quad \text { with } \mathbf{c}|0\rangle=0 \text { and } \quad|1\rangle=\mathbf{c}^{\dagger}|0\rangle
$$

(a) Check that the two states are orthogonal.

$$
\langle 1 \mid 0\rangle=\langle 0| \mathbf{c}|0\rangle=0 .
$$

(b) Show that acting on this Hilbert space it is indeed true that

$$
\mathbf{c}^{\dagger} \mathbf{c}+\mathbf{c c}^{\dagger}=\mathbb{1}
$$

as long as $\langle 1 \mid 1\rangle=\langle 0 \mid 0\rangle$.
A resolution of the identity is the sum of projectors $|0\rangle\langle 0|+|1\rangle\langle 1|=\mathbb{1}$. $\mathbf{c}^{\dagger} \mathbf{c}$ gives zero when acting on $|0\rangle$, and gives back $|1\rangle$ when acting on $|1\rangle$. Therefore it acts as the projector

$$
\mathbf{c}^{\dagger} \mathbf{c}=|1\rangle\langle 1| .
$$

Similarly, $\mathbf{c c}^{\dagger}$ gives zero when acting on $|1\rangle$, and gives back $|0\rangle$ when acting on $|0\rangle$. Therefore it acts as

$$
\mathbf{c c}^{\dagger}=|0\rangle\langle 0| .
$$

Therefore

$$
\mathbf{c}^{\dagger} \mathbf{c}+\mathbf{c c}^{\dagger}=|0\rangle\langle 0|+|1\rangle\langle 1|=\mathbb{1} .
$$

Actually, we haven't specified the overall normalization of \mathbf{c} so far, that is, $\mathbf{c}^{\prime}=z \mathbf{c}$ for $z \in \mathbb{C}$ would also satisfy these demands. This would give

$$
\mathbf{c}^{\dagger} \mathbf{c}+\mathbf{c c}^{\dagger}=|z|^{2}|0\rangle\langle 0|+|z|^{2}|1\rangle\langle 1|=|z|^{2} 11
$$

But now consider

$$
\langle 1 \mid 1\rangle=\langle 0| \mathbf{c c}^{\dagger}|0\rangle=\langle 0|\left(|z|^{2} \mathbb{1}-\mathbf{c}^{\dagger} \mathbf{c}\right)|0\rangle=|z|^{2}\langle 0 \mid 0\rangle .
$$

So we must have $|z|=1$. The overall phase of \mathbf{c} is ambiguous.
(c) Check that

$$
[\mathbf{N}, \mathbf{c}]=-\mathbf{c}, \quad\left[\mathbf{N}, \mathbf{c}^{\dagger}\right]=\mathbf{c}^{\dagger}
$$

where $\mathbf{N}=\mathbf{c}^{\dagger} \mathbf{c}$ is the number operator. Notice that this is the same algebra satisfied by bosonic modes.
There is a useful fermionic version of the Liebniz rule for commutators $([A B, C]=A[B, C]+[A, C] B)$, namely

$$
\{A B, C\}=A\{B, C\}-\{A, C\} B
$$

Check: $A B C+C A B=A B C+A C B-A C B-C A B$.
Applying this here, we get

$$
[\mathbf{N}, \mathbf{c}]=\left[\mathbf{c}^{\dagger} \mathbf{c}, \mathbf{c}\right]=\mathbf{c}^{\dagger}\{\mathbf{c}, \mathbf{c}\}-\left\{\mathbf{c}^{\dagger}, \mathbf{c}\right\} \mathbf{c}=-\mathbf{c}
$$

while

$$
\left[\mathbf{N}, \mathbf{c}^{\dagger}\right]=\mathbf{c}^{\dagger}\left\{\mathbf{c}, \mathbf{c}^{\dagger}\right\}-\left\{\mathbf{c}^{\dagger}, \mathbf{c}^{\dagger}\right\} \mathbf{c}=+\mathbf{c}^{\dagger}
$$

3. Majorana modes. Given a collection of fermionic operators \mathbf{c}_{A}, satisfying the fermionic creation-annihilation algebra

$$
\left\{\mathbf{c}_{A}, \mathbf{c}_{B}^{\dagger}\right\}=\delta_{A B} \mathbb{1} \quad \text { and } \quad\left\{\mathbf{c}_{A}, \mathbf{c}_{B}\right\}=0
$$

we can decompose them into their real and imaginary parts

$$
\gamma_{A 1} \equiv \frac{1}{2}\left(\mathbf{c}_{A}+\mathbf{c}_{A}^{\dagger}\right), \quad \gamma_{A 2} \equiv \frac{1}{2 \mathbf{i}}\left(\mathbf{c}_{A}-\mathbf{c}_{A}^{\dagger}\right) .
$$

These are called Majorana modes.
(a) Show that the Majorana modes satisfy the algebra

$$
\left\{\gamma_{a}, \gamma_{b}\right\}=2 \Upsilon \delta_{a b} 11
$$

where here a is a multi-index running over both A and $\alpha=1,2$. In particular, notice that $\gamma_{a}^{2}=\Upsilon 11$. Find the constant Υ.
(b) Write the number operator $\mathbf{c}_{A}^{\dagger} \mathbf{c}_{A}$ in terms of the Majorana modes. Show that it is hermitian.
For each complex mode, $c^{\dagger} c=\mathbf{i} \gamma_{1} \gamma_{2}$. This is hermitian because $\left(\mathbf{i} \gamma_{1} \gamma_{2}\right)^{\dagger}=$ $-\mathbf{i} \gamma_{2} \gamma_{1}=+\mathbf{i} \gamma_{1} \gamma_{2}$.

4. Multiple photons on paths of an interferometer.

One way to make a qubit is out of the two states of a photon moving on the upper and lower paths of an interferometer. On such a qbit, a half-silvered mirror \mathbf{H} acts as a unitary gate, as indicated at left. (The dot below the mirror specifies a sign convention, to be explained below.)
On the other hand, photons are bosons. This means that if

$$
\mathbf{a}^{\dagger}|0,0\rangle \equiv|1,0\rangle \text { is a state with one photon on the upper path }
$$

of the interferometer, then

$$
\frac{\left(\mathbf{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle \equiv|n, 0\rangle \text { is a state with } n \text { photons on the upper path. }
$$

Similarly, define

$$
\frac{\left(\mathbf{b}^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle \equiv|0, n\rangle \text { to be a state with } n \text { photons on the lower path }
$$

of the interferometer. (Note that $[\mathbf{a}, \mathbf{b}]=0=\left[\mathbf{a}, \mathbf{b}^{\dagger}\right]$ - they are independent modes.)

Now suppose we direct these two paths through a half-silvered mirror, as in the figure. A half-silvered mirror acts as a Hadamard gate

$$
\mathbf{H} \equiv \frac{1}{\sqrt{2}}\left(\boldsymbol{\sigma}^{x}+\boldsymbol{\sigma}^{z}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

on the qubit made from the one-photon states. (The dot tells us where to put the negative entry.)

Some warm-up questions:
(a) What is the state $|0,0\rangle$? How does \mathbf{H} act on $|0,0\rangle$?

All answers below part d.
(b) How does \mathbf{H} act on $|2,0\rangle$ and $|0,2\rangle$?
(c) How does \mathbf{H} act on the operators \mathbf{a}^{\dagger} and \mathbf{b}^{\dagger} (in order that the above relations are realized)?

Here's a more interesting question:
(d) A coherent state is a good cartoon of the state of light in a laser beam. What is the state which results upon sending a coherent state of photons

$$
\mid \alpha, \beta) \equiv \mathcal{N}_{\alpha} \mathcal{N}_{\beta} e^{\alpha \mathbf{a}^{\dagger}+\beta \mathbf{b}^{\dagger}}|0,0\rangle
$$

through a half-silvered mirror? $\left(\mathcal{N}_{\alpha} \equiv e^{-|\alpha|^{2} / 2}\right.$ is a normalization constant.) [Hint: it may be useful to insert $\mathbb{1}=\mathbf{H}^{2}$ in between the $e^{\alpha \mathbf{a}^{\dagger}+\beta \mathbf{b}^{\dagger}}$ and the $|0,0\rangle$.]

The hilbert space under discussion here is that of two harmonic oscillators, and above we have defined $|n, m\rangle$ to be the state where the respective number operators $\mathbf{a}^{\dagger} \mathbf{a}$ and $\mathbf{b}^{\dagger} \mathbf{b}$ have eigenvalues n, m respectively. From the definition of the photon-path-as-qbit, we have:

$$
\begin{aligned}
& \mathbf{H}|1,0\rangle=\frac{1}{\sqrt{2}}(|1,0\rangle+|0,1\rangle)=\frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}+\mathbf{b}^{\dagger}\right)|0,0\rangle \\
& \mathbf{H}|0,1\rangle=\frac{1}{\sqrt{2}}(|1,0\rangle-|0,1\rangle)=\frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}-\mathbf{b}^{\dagger}\right)|0,0\rangle .
\end{aligned}
$$

Now $|0,0\rangle$ is a state with $n=0$ photons on the upper path and $n=0$ photons on the lower path. No photons at all. So we have $\mathbf{H}|0,0\rangle=|0,0\rangle$ since a mirror does nothing to no photons! (It just sits there.) This is a Zen koan: what does a mirror do to no photons. Actually there could be a phase; it would not affect any of the answers below.
This means further that \mathbf{H} acts on the creation operators by

$$
\mathbf{H a}^{\dagger} \mathbf{H}=\frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}+\mathbf{b}^{\dagger}\right), \mathbf{H b}^{\dagger} \mathbf{H}=\frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}-\mathbf{b}^{\dagger}\right)
$$

in order to be consistent with the action on the one-photon states. So we can conclude that
$\mathbf{H}|2,0\rangle=\mathbf{H} \frac{\left(\mathbf{a}^{\dagger}\right)^{2}}{\sqrt{2!}}|0,0\rangle=\left(\mathbf{H a}{ }^{\dagger} \mathbf{H}\right)^{2} \frac{1}{\sqrt{2!}}|0,0\rangle=\frac{1}{2} \frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}+\mathbf{b}^{\dagger}\right)^{2}|0,0\rangle=\frac{1}{2}(|2,0\rangle+\sqrt{2}|1,1\rangle+|0,2\rangle$
$\mathbf{H}|0,2\rangle=\mathbf{H} \frac{\left(\mathbf{b}^{\dagger}\right)^{2}}{\sqrt{2!}}|0,0\rangle=\left(\mathbf{H} \mathbf{b}^{\dagger} \mathbf{H}\right)^{2} \frac{1}{\sqrt{2!}}|0,0\rangle=\frac{1}{2} \frac{1}{\sqrt{2}}\left(\mathbf{a}^{\dagger}-\mathbf{b}^{\dagger}\right)^{2}|0,0\rangle=\frac{1}{2}(|2,0\rangle-\sqrt{2}|1,1\rangle+\mid 0,2$
And finally,

$$
\mathbf{H} e^{\alpha \mathbf{a}^{\dagger}+\beta \mathbf{b}^{\dagger}}|0,0\rangle=e^{\alpha \mathbf{H} \mathbf{a}^{\dagger} \mathbf{H}+\beta \mathbf{H} \mathbf{b}^{\dagger} \mathbf{H}}|0,0\rangle=e^{\frac{1}{\sqrt{2}}\left(\alpha\left(\mathbf{a}^{\dagger}+\mathbf{b}^{\dagger}\right)+\beta\left(\mathbf{a}^{\dagger}-\mathbf{b}^{\dagger}\right)\right)}|0,0\rangle=e^{\frac{\alpha+\beta}{\sqrt{2}} \mathbf{a}^{\dagger}+\frac{\alpha-\beta}{\sqrt{2}} \mathbf{b}^{\dagger}}|0,0\rangle
$$

It acts on the coherent state labels just like it does on the quantum amplitudes. These coherent state labels are the data that label the lightwave in e.g. a laser.

The half-silvered mirror is a special case of the more general notion called a beam-splitter. Suppose instead that the action on the mode operators were ${ }^{1}$

$$
\begin{align*}
\mathbf{U}^{\dagger}(\theta) \mathbf{a} \mathbf{U}(\theta) & =\mathbf{a} \cos \theta+\mathbf{i b} \sin \theta \\
\mathbf{U}^{\dagger}(\theta) \mathbf{b} \mathbf{U}(\theta) & =\mathbf{b} \cos \theta+\mathbf{i a} \sin \theta \tag{1}
\end{align*}
$$

(e) Show that $\mathbf{U}(\theta)$ can be written as an evolution operator, in the form:

$$
\begin{equation*}
\mathbf{U}(\theta)=e^{\mathbf{i} \theta G}, \quad G=\mathbf{a}^{\dagger} \mathbf{b}+\mathbf{b}^{\dagger} \mathbf{a} \tag{2}
\end{equation*}
$$

Write

$$
\begin{equation*}
U^{\dagger} \mathbf{a} U=e^{-\mathbf{i} \theta G} \mathbf{a} e^{\mathbf{i} \theta G}=e^{-\mathbf{i} \theta \mathrm{ad}_{G}} \mathbf{a} \tag{3}
\end{equation*}
$$

where ad_{G} is defined to be the adjoint action of G, that is,

$$
\operatorname{ad}_{G} \mathcal{O} \equiv[G, \mathcal{O}]
$$

The expression (3) follows by Taylor expansion. So we just need to figure out $\operatorname{ad}_{G}(\mathbf{a}), \operatorname{ad}_{G}^{2}(\mathbf{a})$ etc... But this is very simple:

$$
\operatorname{ad}_{G}(\mathbf{a})=[G, \mathbf{a}]=\left[\mathbf{a}^{\dagger} \mathbf{b}, \mathbf{a}\right]=-\mathbf{b} .
$$

This means

$$
\operatorname{ad}_{G}^{2}(\mathbf{a})=[G,[G, \mathbf{a}]]=[G,-\mathbf{b}]=\left[\mathbf{b}^{\dagger} \mathbf{a},-\mathbf{b}\right]=+\mathbf{a} .
$$

And therefore the exponential series $e^{-\mathrm{i} \theta \mathrm{Aad}_{G}} \mathbf{a}$ is just

$$
e^{-\mathbf{i} \theta \mathrm{ad}_{G}} \mathbf{a}=\mathbf{a}+\frac{(-\mathbf{i} \theta)^{2}}{2!} \mathbf{a}+\frac{(-\mathbf{i} \theta)^{4}}{4!} \mathbf{a}+\cdots-\mathbf{i} \theta(-\mathbf{b})+\frac{(-\mathbf{i} \theta)^{3}}{3!}(-\mathbf{b})+\cdots=\cos \theta \mathbf{a}+\mathbf{i} \sin \theta \mathbf{b} .
$$

Similarly,

$$
e^{-\mathbf{i} \theta \mathrm{ad}_{G}} \mathbf{b}=\cos \theta \mathbf{b}+\mathbf{i} \sin \theta \mathbf{a}
$$

[^0](f) Show that when $\theta=\pi / 4$ this beam-splitter takes the state $|1,1\rangle$ with one boson in each mode to the state
$$
\frac{1}{\sqrt{2}}(|2,0\rangle+|0,2\rangle)
$$

The beam-splitter takes the state to

$$
\begin{align*}
\mathbf{U}^{\dagger}|1,1\rangle & =\mathbf{U}^{\dagger} \mathbf{a}^{\dagger} \mathbf{U U}^{\dagger} \mathbf{b}^{\dagger} \mathbf{U} \mathbf{U}^{\dagger}|0\rangle \tag{4}\\
& =\left(\cos \theta \mathbf{a}^{\dagger}-\mathbf{i} \sin \theta \mathbf{b}^{\dagger}\right)\left(\cos \theta \mathbf{b}^{\dagger}-\mathbf{i} \sin \theta \mathbf{a}^{\dagger}\right)|0\rangle \tag{5}\\
& \stackrel{\theta=\frac{\pi}{4}}{=}\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\mathbf{a}^{\dagger} \mathbf{b}^{\dagger}(1-1)-\mathbf{i}\left(\mathbf{a}^{\dagger}\right)^{2}-\mathbf{i}\left(\mathbf{b}^{\dagger}\right)^{2}\right)|0\rangle=-\mathbf{i} \frac{1}{\sqrt{2}}(|2,0\rangle+|0,2\rangle) . \tag{6}
\end{align*}
$$

This is sometimes called the Hong-Ou-Mandel effect.
(g) What if the operators \mathbf{a} and \mathbf{b} were instead fermionic operators? That is, suppose we send fermionic particles through the same beam-splitter, defined by (1). What is

$$
\mathbf{U}_{F}(\theta=\pi / 4)^{\dagger}|1,1\rangle
$$

in this case? Hint: the form of the generator is different

$$
\mathbf{U}_{F}(\theta)=e^{\mathbf{i} \theta G_{F}}, \quad G_{F}=\mathbf{a}^{\dagger} \mathbf{b}-\mathbf{a b}^{\dagger}
$$

(Notice that G_{F} is still hermitian.)
[I got this last part of the problem from Le Bellac.]
The hermitian conjugate is

$$
G_{F}^{\dagger}=\left(\mathbf{a}^{\dagger} \mathbf{b}-\mathbf{a b}^{\dagger}\right)^{\dagger}=\mathbf{b}^{\dagger} \mathbf{a}-\mathbf{b a}^{\dagger}=-\mathbf{a b}^{\dagger}+\mathbf{a}^{\dagger} b=G_{F} .
$$

In this case, using the identity $[A B, C]=A\{B, C\}-\{A, C\} B$

$$
\left[G_{F}, \mathbf{a}\right]=-\left\{\mathbf{a}^{\dagger}, \mathbf{a}\right\} \mathbf{b}=-\mathbf{b}, \quad\left[G_{F}, \mathbf{b}\right]=-\mathbf{a}\left\{\mathbf{b}^{\dagger}, \mathbf{b}\right\}=-\mathbf{a} .
$$

So the series is again

$$
e^{-\mathbf{i} \theta \mathrm{ad}_{G_{F}}} \mathbf{a}=\mathbf{a}+\mathbf{i} \theta \mathbf{b}+\frac{(-\mathbf{i} \theta)^{2}}{2!} \mathbf{a}-\frac{(-\mathbf{i} \theta)^{3}}{3!} \mathbf{b}+\cdots=\cos \theta \mathbf{a}+\mathbf{i} \sin \theta \mathbf{b}
$$

Notice that even though \mathbf{a} and \mathbf{b} are fermionic operators (e.g., $\mathbf{a}^{2}=0$), the exponential $e^{-\mathbf{i} \theta G_{F}}$ is still an infinite series, because it contains terms which alternate between \mathbf{a} and \mathbf{a}^{\dagger}.

So actually the whole calculation is the same up to the last step:

$$
\begin{align*}
\mathbf{U}_{F}^{\dagger}|1,1\rangle & =\mathbf{U}^{\dagger} \mathbf{a}^{\dagger} \mathbf{U U}^{\dagger} \mathbf{b}^{\dagger} \mathbf{U} \mathbf{U}^{\dagger}|0\rangle \tag{7}\\
& =\left(\cos \theta \mathbf{a}^{\dagger}-\mathbf{i} \sin \theta \mathbf{b}^{\dagger}\right)\left(\cos \theta \mathbf{b}^{\dagger}-\mathbf{i} \sin \theta \mathbf{a}^{\dagger}\right)|0\rangle \tag{8}\\
& \stackrel{\theta=\frac{\pi}{4}}{=}\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\mathbf{a}^{\dagger} \mathbf{b}^{\dagger}-\mathbf{b}^{\dagger} \mathbf{a}^{\dagger}-\mathbf{i}\left(\mathbf{a}^{\dagger}\right)^{2}-\mathbf{i}\left(\mathbf{b}^{\dagger}\right)^{2}\right)|0\rangle=|1,1\rangle \tag{9}
\end{align*}
$$

since $\left\{\mathbf{a}^{\dagger}, \mathbf{b}^{\dagger}\right\}=0$. In the case of Fermions, the state is taken to itself by this beamsplitter.

5. Slightly more interesting bandstructure.

Consider a particle hopping on a chain of sites where each site involves two orbitals, one on the left and one on the right.

So the single-particle hamiltonian is

$$
\begin{equation*}
\mathbf{H}=\sum_{n} t(|n, R\rangle\langle n+1, L|+|n+1, L\rangle\langle n, R|)+(w|n, L\rangle\langle n, R|+h . c .) \tag{10}
\end{equation*}
$$

where w, t are two quantities with dimensions of energy.
(a) Write down the many-body hamiltonian in terms of annihilation $\mathbf{c}_{n, \alpha}$ and creation $\mathbf{c}_{n, \alpha}^{\dagger}$ operators.

$$
\begin{equation*}
\mathbf{H}=\sum_{n}\left(t \mathbf{c}_{R, n}^{\dagger} \mathbf{c}_{L, n+1}+h . c .+w \mathbf{c}_{L, n}^{\dagger} \mathbf{c}_{R, n}+h . c .\right) . \tag{11}
\end{equation*}
$$

(b) Suppose there are N sites and N fermions and suppose $w>t$ (for simplicity take w real). Is it a metal or an insulator? Find the energy difference between the groundstate and the first excited state in the thermodynamic $(N \rightarrow \infty)$ limit.
Since it is translation-invariant and an eigenvalue problem is linear, the single-particle hamiltonian can be diagonalized by going to momentum space. Acting on $|k, \alpha\rangle$, it acts as the matrix

$$
h(k)=\left(\begin{array}{cc}
0 & t e^{-\mathbf{i} k}+w \tag{12}\\
w^{\star}+t e^{\mathbf{i} k} & 0
\end{array}\right)=\left(t \cos k+w_{1}\right) X+\left(t \sin k+w_{2}\right) Y
$$

where $w=w_{1}+\mathbf{i} w_{2}$ and $X \equiv \sigma^{x}, Y \equiv \sigma^{y}$. That is, using $\mathbb{1}=\int_{0}^{2 \pi / a} \sum_{\alpha=L, R} \mathrm{~d} k|k, \alpha\rangle\langle k, \alpha|$,

$$
\begin{equation*}
\mathbf{H}=\mathbf{H} \int_{0}^{2 \pi / a} \mathrm{~d} k \sum_{\alpha}|k, \alpha\rangle\langle k, \alpha|=\int_{0}^{2 \pi / a} \mathrm{~d} k|k, \alpha\rangle\langle k, \beta| h(k)_{\alpha \beta} . \tag{13}
\end{equation*}
$$

Taking w real, the spectrum of the matrix $h(k)$ is

$$
\begin{equation*}
\epsilon_{ \pm}(k)= \pm \sqrt{t^{2}+|w|^{2}+2 w \cos k} \tag{14}
\end{equation*}
$$

which looks like this for $|w| \neq t$.

The system is an insulator, since we fill the bottom band, and then the energy cost to excite an electron in the upper band is

$$
\begin{equation*}
\min _{k}\left(\epsilon_{+}(k)-\epsilon_{-}(k)\right)=2|t-w| . \tag{15}
\end{equation*}
$$

(c) What happens when $w=t$?

In this case the problem is really just a chain of sites with translation symmetry under a single step. The bandstructure looks like this

which is the single band $\epsilon(k)=2 \cos 2 k$ folded on itself into the smaller Brillouin zone. In this case, the system is a metal, since we must fill up half the band.
6. Normalization. Check that if $\Psi\left(r_{1} \cdots r_{n}\right)$ is a normalized and (anti)symmetric wavefunction on n particles, then

$$
\begin{equation*}
|\Psi\rangle \equiv \sum_{r_{1} \cdots r_{n}} \Psi\left(r_{1} \cdots r_{n}\right)\left|r_{1} \cdots r_{n}\right\rangle \tag{16}
\end{equation*}
$$

is normalized, $\langle\Psi \mid \Psi\rangle=1$.
(Interpret the sum over r as an integral if you like.)
The overlap is

$$
\begin{align*}
\langle\Psi \mid \Psi\rangle & =\sum_{r_{1} \cdots r_{n}} \sum_{r_{1}^{\prime} \cdots r_{n}^{\prime}} \Psi\left(r_{1} \cdots r_{n}\right)^{\star} \underbrace{}_{=\frac{1}{n!\sum_{\pi} s^{\pi} \delta_{r_{1} r_{\pi(1)}{ }^{\prime \cdots \delta_{r_{n} r_{\pi(n)}^{\prime}}^{\prime}}}^{\left\langle r_{1} \cdots r_{n} \mid r_{1} \cdots r_{n}^{\prime}\right\rangle} \Psi\left(r_{1}^{\prime} \cdots r_{n}^{\prime}\right)}} \tag{17}\\
& =\sum_{r}\left|\Psi\left(r_{1} \cdots r_{n}\right)\right|^{2}=1 . \tag{18}
\end{align*}
$$

where the last equation is the normalization condition for Ψ. In the first step, we used only the defintion (16) (twice).

[^0]: ${ }^{1}$ The operation H in the previous parts is not $\mathbf{U}(\theta)$ for some θ; it is similar. I apologize for any confusion this caused. To get H we would have to write $\mathbf{U}^{\prime}(\theta)=e^{\mathbf{i} \theta G^{\prime}}$, with $G^{\prime} \equiv \mathbf{i a}^{\dagger} \mathbf{b}-\mathbf{i b} \mathbf{b}^{\dagger} \mathbf{a}$, and set $\theta=\pi / 2$.

