University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2023 Assignment 4

Due 11:00am Wednesday, May 3, 2023

1. Commutation relations of creation operators for general one-particle states. Show that

$$
\mathbf{a}\left(\varphi_{1}\right) \mathbf{a}^{\dagger}\left(\varphi_{2}\right)-\zeta \mathbf{a}^{\dagger}\left(\varphi_{2}\right) \mathbf{a}\left(\varphi_{1}\right)=\left\langle\varphi_{2} \mid \varphi_{1}\right\rangle,
$$

where these objects are as defined in the lecture notes.

2. Fermion creation and annihilation algebra.

Consider a single fermion mode c. We showed in lecture that the associated Hilbert space is two-dimensional, and is spanned by

$$
|0\rangle, \quad \text { with } \mathbf{c}|0\rangle=0 \text { and } \quad|1\rangle=\mathbf{c}^{\dagger}|0\rangle .
$$

(a) Check that the two states are orthogonal.
(b) Show that acting on this Hilbert space it is indeed true that

$$
\mathbf{c}^{\dagger} \mathbf{c}+\mathbf{c c}^{\dagger}=\mathbb{1}
$$

as long as $\langle 1 \mid 1\rangle=\langle 0 \mid 0\rangle$.
(c) Check that

$$
[\mathbf{N}, \mathbf{c}]=-\mathbf{c}, \quad\left[\mathbf{N}, \mathbf{c}^{\dagger}\right]=\mathbf{c}^{\dagger}
$$

where $\mathbf{N}=\mathbf{c}^{\dagger} \mathbf{c}$ is the number operator. Notice that this is the same algebra satisfied by bosonic modes.
3. Majorana modes. Given a collection of fermionic operators \mathbf{c}_{A}, satisfying the fermionic creation-annihilation algebra

$$
\left\{\mathbf{c}_{A}, \mathbf{c}_{B}^{\dagger}\right\}=\delta_{A B} \mathbb{1} \quad \text { and } \quad\left\{\mathbf{c}_{A}, \mathbf{c}_{B}\right\}=0
$$

we can decompose them into their real and imaginary parts

$$
\gamma_{A 1} \equiv \frac{1}{2}\left(\mathbf{c}_{A}+\mathbf{c}_{A}^{\dagger}\right), \quad \gamma_{A 2} \equiv \frac{1}{2 \mathbf{i}}\left(\mathbf{c}_{A}-\mathbf{c}_{A}^{\dagger}\right) .
$$

These are called Majorana modes.
(a) Show that the Majorana modes satisfy the algebra

$$
\left\{\gamma_{a}, \gamma_{b}\right\}=2 \Upsilon \delta_{a b} \mathbb{1}
$$

where here a is a multi-index running over both A and $\alpha=1,2$. In particular, notice that $\gamma_{a}^{2}=\Upsilon \mathbb{1}$. Find the constant Υ.
(b) Write the number operator $\mathbf{c}_{A}^{\dagger} \mathbf{c}_{A}$ in terms of the Majorana modes. Show that it is hermitian.

4. Multiple photons on paths of an interferometer.

One way to make a qubit is out of the two states of a photon moving on the upper and lower paths of an interferometer. On such a qbit, a half-silvered mirror \mathbf{H} acts as a unitary gate, as indicated at left. (The dot below the mirror specifies a sign convention, to be explained below.)
On the other hand, photons are bosons. This means that if

$$
\mathbf{a}^{\dagger}|0,0\rangle \equiv|1,0\rangle \text { is a state with one photon on the upper path }
$$

of the interferometer, then

$$
\frac{\left(\mathbf{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle \equiv|n, 0\rangle \text { is a state with } n \text { photons on the upper path. }
$$

Similarly, define

$$
\frac{\left(\mathbf{b}^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle \equiv|0, n\rangle \text { to be a state with } n \text { photons on the lower path }
$$

of the interferometer. (Note that $[\mathbf{a}, \mathbf{b}]=0=\left[\mathbf{a}, \mathbf{b}^{\dagger}\right]$ - they are independent modes.)

Now suppose we direct these two paths through a half-silvered mirror, as in the figure. A half-silvered mirror acts as a Hadamard gate

$$
\mathbf{H} \equiv \frac{1}{\sqrt{2}}\left(\boldsymbol{\sigma}^{x}+\boldsymbol{\sigma}^{z}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

on the qubit made from the one-photon states. (The dot tells us where to put the negative entry.)

Some warm-up questions:
(a) What is the state $|0,0\rangle$? How does \mathbf{H} act on $|0,0\rangle$?
(b) How does \mathbf{H} act on $|2,0\rangle$ and $|0,2\rangle$?
(c) How does \mathbf{H} act on the operators \mathbf{a}^{\dagger} and \mathbf{b}^{\dagger} (in order that the above relations are realized)?

Here's a more interesting question:
(d) A coherent state is a good cartoon of the state of light in a laser beam. What is the state which results upon sending a coherent state of photons

$$
\mid \alpha, \beta) \equiv \mathcal{N}_{\alpha} \mathcal{N}_{\beta} e^{\alpha \mathbf{a}^{\dagger}+\beta \mathbf{b}^{\dagger}}|0,0\rangle
$$

through a half-silvered mirror? $\left(\mathcal{N}_{\alpha} \equiv e^{-|\alpha|^{2} / 2}\right.$ is a normalization constant. $)$ [Hint: it may be useful to insert $\mathbb{1}=\mathbf{H}^{2}$ in between the $e^{\alpha \mathbf{a}^{\dagger}+\beta \mathbf{b}^{\dagger}}$ and the $|0,0\rangle$.]

The half-silvered mirror is a special case of the more general notion called a beam-splitter. Suppose instead that the action on the mode operators were ${ }^{1}$

$$
\begin{align*}
\mathbf{U}^{\dagger}(\theta) \mathbf{a} \mathbf{U}(\theta) & =\mathbf{a} \cos \theta+\mathbf{i} \mathbf{b} \sin \theta \\
\mathbf{U}^{\dagger}(\theta) \mathbf{b} \mathbf{U}(\theta) & =\mathbf{b} \cos \theta+\mathbf{i} \mathbf{a} \sin \theta \tag{1}
\end{align*}
$$

(e) Show that $\mathbf{U}(\theta)$ can be written as an evolution operator, in the form:

$$
\begin{equation*}
\mathbf{U}(\theta)=e^{\mathbf{i} \theta G}, \quad G=\mathbf{a}^{\dagger} \mathbf{b}+\mathbf{b}^{\dagger} \mathbf{a} \tag{2}
\end{equation*}
$$

(f) Show that when $\theta=\pi / 4$ this beam-splitter takes the state $|1,1\rangle$ with one boson in each mode to the state

$$
\frac{1}{\sqrt{2}}(|2,0\rangle+|0,2\rangle)
$$

(g) What if the operators \mathbf{a} and \mathbf{b} were instead fermionic operators? That is, suppose we send fermionic particles through the same beam-splitter, defined by (1). What is

$$
\mathbf{U}_{F}(\theta=\pi / 4)^{\dagger}|1,1\rangle
$$

in this case? Hint: the form of the generator is different

$$
\mathbf{U}_{F}(\theta)=e^{\mathbf{i} \theta G_{F}}, \quad G_{F}=\mathbf{a}^{\dagger} \mathbf{b}-\mathbf{a b}^{\dagger}
$$

(Notice that G_{F} is still hermitian.)

[^0]
5. Slightly more interesting bandstructure.

Consider a particle hopping on a chain of sites where each site involves two orbitals, one on the left and one on the right.

So the single-particle hamiltonian is

$$
\begin{equation*}
\mathbf{H}=\sum_{n} t(|n, R\rangle\langle n+1, L|+|n+1, L\rangle\langle n, R|)+(w|n, L\rangle\langle n, R|+h . c .) \tag{3}
\end{equation*}
$$

where w, t are two quantities with dimensions of energy.
(a) Write down the many-body hamiltonian in terms of annihilation $\mathbf{c}_{n, \alpha}$ and creation $\mathbf{c}_{n, \alpha}^{\dagger}$ operators.
(b) Suppose there are N sites and N fermions and suppose $w>t$ (for simplicity take w real). Is it a metal or an insulator? Find the energy difference between the groundstate and the first excited state in the thermodynamic $(N \rightarrow \infty)$ limit.
(c) What happens when $w=t$?
6. Normalization. Check that if $\Psi\left(r_{1} \cdots r_{n}\right)$ is a normalized and (anti)symmetric wavefunction on n particles, then

$$
\begin{equation*}
|\Psi\rangle \equiv \sum_{r_{1} \cdots r_{n}} \Psi\left(r_{1} \cdots r_{n}\right)\left|r_{1} \cdots r_{n}\right\rangle \tag{4}
\end{equation*}
$$

is normalized, $\langle\Psi \mid \Psi\rangle=1$.
(Interpret the sum over r as an integral if you like.)

[^0]: ${ }^{1}$ The operation H in the previous parts is not $\mathbf{U}(\theta)$ for some θ; it is similar. I apologize for any confusion this caused. To get H we would have to write $\mathbf{U}^{\prime}(\theta)=e^{\mathbf{i} \theta G^{\prime}}$, with $G^{\prime} \equiv \mathbf{i a}^{\dagger} \mathbf{b}-\mathbf{i} \mathbf{b}^{\dagger} \mathbf{a}$, and set $\theta=\pi / 2$.

