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1. Heat capacity of empty space. What is the heat capacity of empty space?

For the purposes of this problem you may ignore all degrees of freedom besides

the electromagnetic field. We are particularly interested in the dependence on

temperature.

Compare your calculation to HW02 problem 3d.

2. Further evidence for the clumping tendencies of bosons.

Consider again the model of a 1d crystalline solid that we discussed in class: It

consists of N point masses, coupled to their neighbors:

H0 =
N∑
n=1

(
p2

2m
+

1

2
κ (qn − qn−1)

2

)
=
∑
{k}

~ωk
(
a†kak +

1

2

)
. (1)

Assume periodic boundary conditions qn = qn+N , so that the allowed wavenum-

bers are

{k} ≡ {kj =
2π

Na
j, j = 1, 2...N} .

Consider a state with two phonons defined by

|k1, k2〉 ≡ a†k1a
†
k2
|0〉 .

(a) In the state |k1, k2〉, what is the probability of finding two phonons at the

location x1?

Do this problem both using a first-quantized point of view and using the

algebra of creation and annihilation operators. Make sure your answers

agree!

[Warning: the statement of this problem is deceptively simple.]

(b) Make sure your probabilities add up to one.

(c) Compare your result to the answer that would obtain if the particles were

distinguishable (and occupied the same two single-particle states). Do bosons

clump?

(d) Does the story change if k1 = k2?
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(e) Bonus problem: for two fermions in the state |k1, k2〉, what is the probability

of finding one at x1 and one at x2? Check that your probabilities add to

one. (It is possible to do this part in parallel with the others.)

If k1 = k2, then the state above is not normalized! Recall that the state of an

SHO with occupation number 2 is

|2〉 =

(
a†
)2

√
2!
|0〉 .

We need the state to be normalized so that the total probability for anything

happening is

1 = 〈k1k2|k1k2〉 =
∑
α

〈k1k2|α〉 〈α|k1k2〉 =
∑
α

Pk1k2(α)

as long as 1 =
∑

α |α〉〈α| is a resolution of the identity.

Let’s think about the distinguishable case first.

In a state with two particles, there are three possibilities for the number of

particles at a particular location x1: 0, 1, 2. In a plane-wave, the probability

Pk(x) = | 〈k|x〉 |2 = 1
N

is uniform in space, so we just have to count configurations.

The probability of no phonons is the probability that they are both elsewhere:

p0 = (1− 1
N

)2. The probability of two is p2 = 1
N2 . The probability of exactly one

is p1 = 2 (N−1)
N2 = 2

N
− 2

N2 . Note that

p0 + p1 + p2 = (1− 2

N
+

1

N2
) +

2

N
− 2

N2
+

1

N2
= 1 .

This counting is illustrated here for N = 4:
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the two axes are the positions of the two (distinguishable) particles, the states

with exactly one phonon at x = x1 are circled.

For indistinguishable particles (bosons or fermions), with the normalization con-

vention we have been using, the resolution of the identity on the 2-particle Hilbert

space in the position basis is

12 =
∑
x1x2

|x1x2〉〈x1x2|

where the sum is over all x1, x2 and

|x1x2〉 ≡
1√
2!
a†x1a

†
x2
|0〉

no matter whether x1 and x2 are equal. Notice that the state |x1 6= x2〉 is not

normalized 〈x1 6= x2|x1 6= x2〉 = 1
2
. (!)

A good way to think about it is that |x1, x2〉 and |x2, x1〉 aren’t different states,

so they should only count once in the resolution of the identity, so if we normalize

them to one and sum over all x1, x2, we overcount.

For k1 6= k2, then,

P (x1, x2) = | 〈x1x2|k1k2〉 |2 =

∣∣∣∣〈0| a2
x1√
2
a†k1a

†
k2
|0〉
∣∣∣∣2 (2)

=

∣∣∣∣∣ 1√
2N

∑
p1p2

eip1x1+ip2x2 〈0| ap1ap2a
†
k1
a†k2 |0〉

∣∣∣∣∣
2

(3)

=
1

2N

∣∣∣∣∣∑
p1p2

eip1x1+ip2x2 (δp1k1δp2k2 ± δp2k1δp1k2)

∣∣∣∣∣
2

(4)

=
1

2N

∣∣(eik1x1+ik2x2 ± eik2x1+ik1x2
)∣∣2 (5)

=
1

N
(1± cos(k1 − k2)(x1 − x2)) .

For x1 = x2, this reduces to

P (x1 = x2) =
1± 1

N2

which naturally is zero for fermions and 2
N2 for bosons.

So for identical bosons,

p2 =
2

N2
,
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which is bigger by a factor of two than it would be for distinguishable particles:

bosons clump together!

To check the normalization, note that for ∆k = k1− k2 = 2πj
N

with j = 1..N − 1,

we have ∑
x1x2

P (x1, x2) =
∑
x1=x2

1± 1

N2
+

1

N2

∑
x1 6=x2

(1± cos ∆k(x1 − x2)) (6)

=
1± 1

N
+
N − (1± 1)

N
= 1. (7)

In the case where k1 = k2, this effect goes away, since

P (x1 = x2) =

∣∣∣∣∣∣∣〈0|
a2
x1√
2

(
a†k

)2
√

2
|0〉

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
1

2N

∑
p1p2

eip1x1+ip2x1 〈0| ap1ap2
(
a†k

)2
|0〉︸ ︷︷ ︸

=2δp1kδp2k

∣∣∣∣∣∣∣∣
2

=
1

N2
.

P (x1 6= x2) =

∣∣∣∣∣∣∣〈0|
ax1ax2√

2

(
a†k

)2
√

2
|0〉

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
1

2N

∑
p1p2

eip1x1+ip2x2 〈0| ap1ap2
(
a†k

)2
|0〉︸ ︷︷ ︸

=2δp1kδp2k

∣∣∣∣∣∣∣∣
2

=
1

N2
.

Notice that ∑
x1,x2

Pk1=k2(x1, x2) =
∑
x1,x2

1

N2
= 1.

From a first-quantized point of view, the state is

|k1, k2〉 =
|k1〉 ⊗ |k2〉 ± |k2〉 ⊗ |k1〉√

2

and the position eigenstates are

|x1, x2〉 =
|x1〉 ⊗ |x2〉 ± |x2〉 ⊗ |x1〉√

2
=

1√
2N

∑
p1p2

(
e−ip1x1−ip2x2 ± e−ip2x1−ip1x2

)
|p1〉⊗|p2〉 .

The probability is then

P (x1, x2) = |〈x1, x2|k1, k2〉|2 (8)

=
1

2N2

∣∣∣∣∣∑
p1p2

(
eip1x1+ip2x2 ± eip2x1+ip1x2

)
δp1k1δp2k2

∣∣∣∣∣
2

(9)

=
1

2N2

∣∣(eik1x1+ik2x2 ± eik2x1+ik1x2
)∣∣2 (10)

=
1

N
(1± cos(k1 − k2)(x1 − x2)) (11)
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as before.

3. [Bonus problem] Describe the outcome of the intensity interferometry (Hanbury-

Brown and Twiss) experiment for beams of fermions.

4. [Bonus problem] Consider free fermions with single-particle Hamiltonian

h = t
∑
n

|n〉〈n+ 1|+ h.c.+
∑
n

Vn|n〉〈n|.

(a) For the case without an external potential, Vn = 0, numerically evaluate the

single-particle Green’s function

G(n,m) ≡ 〈Φ0|ψ†nψm |Φ0〉

in the groundstate. Plot it as a function of the separation between the two

points.

(b) Now add a random potential Vn. Choose each Vn independently from a

Gaussian distribution with width v. How does this affect the Green’s func-

tion? What happens if you average G(n,m) over v for fixed n−m.
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