University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2023 Assignment 6

Due 11:00am Wednesday, May 17, 2023

1. Brain-warmer. Consider two single-particle orbitals with wavefunctions $\psi_{\alpha}(r), \psi_{\beta}(r)$. Find the position-space wavefunctions

$$
\Psi\left(r_{1} \sigma, r_{2} \sigma^{\prime}\right) \equiv\left\langle r_{1} \sigma, r_{2} \sigma^{\prime} \mid \Psi\right\rangle=\langle 0| \mathbf{a}_{r_{2} \sigma^{\prime}} \mathbf{a}_{r_{1} \sigma}|\Psi\rangle
$$

for the four states of two spinful fermions:

$$
|S\rangle=\frac{1}{\sqrt{2}} \mathbf{a}_{\alpha \sigma}^{\dagger} \mathbf{a}_{\beta \sigma^{\prime}}^{\dagger} \varepsilon_{\sigma \sigma^{\prime}}|0\rangle=\frac{1}{\sqrt{2}}\left(\mathbf{a}_{\alpha \uparrow}^{\dagger} \mathbf{a}_{\beta \downarrow}^{\dagger}-\mathbf{a}_{\alpha \downarrow}^{\dagger} \mathbf{a}_{\beta \uparrow}^{\dagger}\right)|0\rangle
$$

$|A, 1\rangle=\mathbf{a}_{\alpha \uparrow}^{\dagger} \mathbf{a}_{\beta \uparrow}^{\dagger}|0\rangle, \quad|A, 0\rangle=\frac{1}{\sqrt{2}}\left(\mathbf{a}_{\alpha \uparrow}^{\dagger} \mathbf{a}_{\beta \downarrow}^{\dagger}+\mathbf{a}_{\alpha \downarrow}^{\dagger} \mathbf{a}_{\beta \uparrow}^{\dagger}\right)|0\rangle, \quad|A,-1\rangle=\mathbf{a}_{\alpha \downarrow}^{\dagger} \mathbf{a}_{\beta \downarrow}^{\dagger}|0\rangle$.
Check that the singlet (triplet) indeed has a symmetric (antisymmetric) orbital wavefunction. Check that the labels on the A states correctly label the eigenvalues of the total spin along $z, S^{z} \equiv \sum_{r} \frac{1}{2} \mathbf{a}_{r}^{\dagger} \sigma^{z} \mathbf{a}_{r}$.
2. Brain-warmer: a beam of particles. Suppose the occupation numbers for a state of bosons satisfy

$$
n_{\vec{p}}=c e^{-\alpha\left(\vec{p}-\vec{p}_{0}\right)^{2} / 2} .
$$

(a) Determine the prefactor $c=c\left(n, \alpha, p_{0}\right)$ so that the average density is

$$
n=\int \mathrm{d}^{3} p n_{\vec{p}}
$$

(b) Check that with this normalization, in the thermodynamic limit of $N \rightarrow \infty$ at fixed $n=N / V$, the pair correlation function is

$$
g(x-y)=1+e^{-(x-y)^{2} / \alpha} .
$$

3. Density matrix and correlation functions. Consider the single-particle density matrix in a mixed state $\rho=\sum_{s} p_{s}\left|\Psi_{s}\right\rangle\left\langle\Psi_{s}\right|$ of N particles, defined as

$$
\rho_{1}\left(r, r^{\prime}\right) \equiv \sum_{s} p_{s} \sum_{r_{2} . . r_{N}} \Psi_{s}^{\star}\left(r, r_{2}, \cdots r_{N}\right) \Psi_{s}\left(r^{\prime}, r_{2}, \cdots r_{N}\right)
$$

This can be defined for either bosons or fermions.
(a) Check that ρ_{1} is proportional to the two-point correlation function

$$
\rho_{1}\left(r, r^{\prime}\right) \propto \operatorname{tr} \rho \psi^{\dagger}(r) \psi\left(r^{\prime}\right) \equiv\left\langle\psi^{\dagger}(r) \psi\left(r^{\prime}\right)\right\rangle
$$

and find the proportionality constant. Check that it works for both bosons and fermions.
(b) [Bonus question] Prove that for a fermionic state the eigenvalues of $\rho_{1}\left(r, r^{\prime}\right)$ are between 0 and 1 .
[Hint: for fermions, the expectation value of the number operator $\psi^{\dagger}(r) \psi(r)$ in any state is ≤ 1.]
4. A charged particle, classically. [If you did this problem earlier this quarter, please submit your solution again for bookkeeping purposes.] This problem is an exercise in calculus of variations, as well as an important ingredient in our discussion of particles in electromagnetic fields.

Consider the following action functional for a particle in three dimensions:

$$
S[x]=\int d t\left(\frac{m}{2} \dot{\vec{x}}^{2}-e \Phi(\vec{x})+\frac{e}{c} \dot{\vec{x}} \cdot \vec{A}(x)\right) .
$$

(a) Show that the extremization of this functional gives the equation of motion:

$$
\frac{\delta S[x]}{\delta x^{i}(t)}=-m \ddot{x}^{i}(t)-e \partial_{x^{i}} \Phi(x(t))+\frac{e}{c} \dot{x}^{j} F_{i j}(x(t))
$$

where $F_{i j} \equiv \partial_{x^{i}} A_{j}-\partial_{x^{j}} A_{i}$. Show that this is the same as the usual CoulombLorentz force law

$$
\vec{F}=e\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)
$$

with $B_{i} \equiv \frac{1}{2} \epsilon_{i j k} F_{j k}$.
(b) Show that the canonical momenta are

$$
\Pi_{i} \equiv \frac{\partial L}{\partial \dot{x}^{i}}=m \dot{x}^{i}+\frac{e}{c} A_{i}(x) .
$$

Here $S=\int d t L$. (I call them Π rather than p to emphasize the difference from the 'mechanical momentum' $m \dot{x}$.) Show that the resulting Hamiltonian is

$$
H \equiv \sum_{i} \dot{x}^{i} \Pi^{i}-L=\frac{1}{2 m}\left(\Pi_{i}-\frac{e}{c} A_{i}(x(t))\right)^{2}+e \Phi
$$

