University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 212C QM Spring 2023 Assignment 8

Due 11:00am Wednesday, May 31, 2023

1. Landau Levels in an Electric Field. [If you did this problem last week, please hand in your solution again.]

In lecture I gave several arguments that a quantum Hall droplet has a linearlydispersing edge mode. Here is a fully quantum mechanical argument. We're going to think about the physics in a neighborhood of the boundary of the sample, where the confining potential $V \simeq-E x$ is slowly varying, and describes an electric field $E=-\partial_{x} V$.

The Hamiltonian in the Landau gauge (the one used on the last homework) is

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+\left(p_{y}+e B x\right)^{2}\right)-e E x . \tag{1}
\end{equation*}
$$

(a) Using the same ansatz as in the last homework, write the Hamiltonian as that of a displaced harmonic oscillator.
(b) Conclude that the eigenstates have the form

$$
\begin{equation*}
\psi(x, y)=\psi_{n, k}\left(x-\frac{m E}{e B^{2}}, y\right) \tag{2}
\end{equation*}
$$

with energies

$$
\begin{equation*}
E_{n, k}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)+e E\left(k \ell_{B}-\frac{e E}{m \omega_{c}^{2}}\right)+\frac{m}{2} \frac{E^{2}}{B^{2}} . \tag{3}
\end{equation*}
$$

(c) Plot this spectrum, and interpret $\partial_{k} E_{n, k}$ as a velocity in the y direction.
(d) Compare this drift velocity with the classical behavior of a charged particle in crossed E and B fields.

2. Interacting particles on a very small lattice.

Consider the Hamiltonian

$$
\mathbf{H}=-t \sum_{i=1}^{N}\left(\mathbf{a}_{i}^{\dagger} \mathbf{a}_{i+1}+\mathbf{a}_{i+1}^{\dagger} \mathbf{a}_{i}\right)+V \sum_{i} \mathbf{n}_{i} \mathbf{n}_{i+1}
$$

describing particles on a circular chain $\left(\mathbf{a}_{i+N}=\mathbf{a}_{i}\right)$. Here $\mathbf{n}_{i} \equiv \mathbf{a}_{i}^{\dagger} \mathbf{a}_{i}$. Assume $t, V>0$.
(a) Suppose that the operators a are fermionic $\left(\left\{\mathbf{a}_{i}, \mathbf{a}_{j}\right\}=\delta_{i j}\right)$. Suppose there are only three $(\mathrm{N}=3)$ sites. Write the matrix form of the Hamiltonian acting on the sector with exactly two fermions. Beware of signs. Find its eigenvalues and eigenvectors. Feel free to use some software (e.g. Mathematica or Sympy). Compare to the case with exactly one fermion.
(b) Consider general N sites and exactly $N-1$ particles. Again compare to the case of a single particle.
(c) Consider again $N=3$ and exactly two particles, but now suppose that the particles are bosons. Write down the matrix representation of the Hamiltonian in this case. Plot the spectrum as a function of V / t.
3. Brain-warmer: Spin rotations. The goal of this problem is to solve the Transverse Field Ising Model in the mean field approximation.
(a) Show that

$$
\mathbf{H}(\theta) \equiv-K \sum_{i}\left(\sin \theta \mathbf{X}_{i}+\cos \theta \mathbf{Z}_{i}\right)=-K \mathbf{U} \sum_{i} \mathbf{Z}_{i} \mathbf{U}^{\dagger}
$$

where

$$
\mathbf{U}=e^{-\mathbf{i} \theta \sum_{i} \mathbf{Y}_{i}}
$$

This is a global rotation about the y-axis.
(b) Conclude that the groundstate of $\mathbf{H}(\theta)$ is

$$
|\theta\rangle \equiv \mathbf{U} \otimes_{i}|\uparrow\rangle_{i} .
$$

(c) Compute $m=\langle\theta| \mathbf{Z}_{i}|\theta\rangle$.
(d) Impose the self-consistency condition that m is the expectation value used to determine the mean field in

$$
\mathbf{H}_{\mathrm{TFIM}} \simeq \mathbf{H}_{\mathrm{MFT}}=-J \sum_{i} g \mathbf{X}_{i}-\sum_{i} \mathbf{Z}_{i}\left(\frac{1}{2} \sum_{\text {neighbors } j \text { of } i}\left\langle\mathbf{Z}_{j}\right\rangle\right)=-J \sum_{i}\left(g \mathbf{X}_{i}-\frac{1}{2} z m \mathbf{Z}_{i}\right) .
$$

Plot θ as a function of g.

4. Two coupled spins.

This is a very useful warmup for the next problem. Consider a four-state system consisting of two qbits,

$$
\mathcal{H}=\operatorname{span}\left\{\left|\epsilon_{1}\right\rangle \otimes\left|\epsilon_{2}\right\rangle \equiv\left|\epsilon_{1} \epsilon_{2}\right\rangle, \epsilon=\uparrow_{z}, \downarrow_{z}\right\} .
$$

(a) For each qbit, define $\boldsymbol{\sigma}^{ \pm} \equiv \frac{1}{2}\left(\boldsymbol{\sigma}^{x} \pm \mathbf{i} \boldsymbol{\sigma}^{y}\right)$. (These are raising and lowering operators for $\boldsymbol{\sigma}^{z}:\left[\boldsymbol{\sigma}^{z}, \boldsymbol{\sigma}^{ \pm}\right]= \pm 2 \boldsymbol{\sigma}^{ \pm}$. Check this.)
Show that

$$
\overrightarrow{\boldsymbol{\sigma}}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}_{2}=2\left(\boldsymbol{\sigma}_{1}^{+} \boldsymbol{\sigma}_{2}^{-}+\boldsymbol{\sigma}_{1}^{-} \boldsymbol{\sigma}_{2}^{+}\right)+\boldsymbol{\sigma}_{1}^{z} \boldsymbol{\sigma}_{2}^{z} .
$$

Here, by for example $\boldsymbol{\sigma}_{1}^{x}$ I mean the operator $\boldsymbol{\sigma}^{x} \otimes \mathbb{1}$ which acts as

$$
\boldsymbol{\sigma}^{x} \otimes \mathbb{1}\left|\uparrow \epsilon_{2}\right\rangle=\left|\downarrow \epsilon_{2}\right\rangle, \quad \boldsymbol{\sigma}^{x} \otimes \mathbb{1}\left|\downarrow \epsilon_{2}\right\rangle=\left|\uparrow \epsilon_{2}\right\rangle .
$$

(b) Determine the action of the operator $\overrightarrow{\boldsymbol{\sigma}}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}_{2}$ on the basis states

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle .
$$

(c) Show that the four vectors

$$
|0,0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle), \quad|1,1\rangle \equiv|\uparrow \uparrow\rangle, \quad|1,0\rangle \equiv \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle), \quad|1,-1\rangle \equiv|\downarrow \downarrow\rangle
$$

are orthonormal and are eigenvectors of $\overrightarrow{\boldsymbol{\sigma}}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}_{2}$ with eigenvalues 1 or -3 .
(d) Show that they are also eigenvectors of $\mathbf{J}^{2} \equiv\left(\overrightarrow{\boldsymbol{\sigma}}_{1}+\overrightarrow{\boldsymbol{\sigma}}_{2}\right)^{2}$ and $\mathbf{J}^{z} \equiv \boldsymbol{\sigma}_{1}^{z}+\boldsymbol{\sigma}_{2}^{z}$ and find their eigenvalues.
(e) Consider the operator

$$
\mathcal{P}_{1,2} \equiv \frac{1}{2}\left(\mathbb{1}+\overrightarrow{\boldsymbol{\sigma}}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}_{2}\right)
$$

acting on the two spins. Show that $\mathcal{P}_{1,2}$ acts by exchanging the states of the two spins:

$$
\mathcal{P}_{1,2}\left|\epsilon_{1} \epsilon_{2}\right\rangle=\left|\epsilon_{2} \epsilon_{1}\right\rangle .
$$

(f) Show that the operator

$$
Q_{1,2} \equiv \frac{1}{4}\left(\mathbb{1}-\overrightarrow{\boldsymbol{\sigma}}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}_{2}\right)
$$

acts as a projector onto the (singlet) state $|0,0\rangle$.

5. Spin chains and spin waves.

A one-dimensional (SU(2)-symmetric) ferromagnet can be represented as a chain of N qbits (spin-1/2 particles) numbered $n=0, \ldots N-1, N \gg 1$, fixed along a line with a spacing ℓ between each successive pair. It is convenient to use periodic boundary conditions, where the N th spin is identified with the 0th spin: $n+N \equiv n$. Suppose that each spin interacts only with its two nearest neighbors, so the Hamiltonian can be written as

$$
\mathbf{H}=\frac{1}{2} N J \mathbb{1}-\frac{1}{2} J \sum_{n=0}^{N-1} \overrightarrow{\boldsymbol{\sigma}}_{n} \cdot \overrightarrow{\boldsymbol{\sigma}}_{n+1} .
$$

where J is a coupling constant determining the strength of the interactions.
(a) Show that all eigenvalues E of \mathbf{H} are non-negative, and that the minimum energy E_{0} (the ground state) is obtained in the state where all the spins point in the same direction. A possible choice for the ground state $\left|\Phi_{0}\right\rangle$ is then

$$
\left|\Phi_{0}\right\rangle=\left|\uparrow_{z}\right\rangle_{n=0} \otimes\left|\uparrow_{z}\right\rangle_{n=1} \otimes \ldots \otimes\left|\uparrow_{z}\right\rangle_{N-1} \equiv|\uparrow \uparrow \ldots \uparrow\rangle
$$

(b) Show that any state obtained from $\left|\Phi_{0}\right\rangle$ by rotating each of the spins by the same angle is also a possible ground state.
[Hint: the generator of spin rotations $\overrightarrow{\mathbf{J}} \equiv \sum_{n} \overrightarrow{\boldsymbol{\sigma}}_{n}$ commutes with the Hamiltonian.]
[Cultural remark: the phenomenon of a ground state which does not preserve a symmetry of the Hamiltonian is called spontaneous symmetry breaking.]
(c) Now we wish to find the low-energy excitations above the ground state $\left|\Phi_{0}\right\rangle$. Show that \mathbf{H} can be written

$$
\mathbf{H}=N J \mathbb{1}-J \sum_{n=0}^{N-1} \mathcal{P}_{n, n+1}=J \sum_{n=0}^{N-1}\left(\mathbb{1}-\mathcal{P}_{n, n+1}\right) .
$$

where

$$
\mathcal{P}_{n, n+1} \equiv \frac{1}{2}\left(\mathbb{1}+\overrightarrow{\boldsymbol{\sigma}}_{n} \cdot \overrightarrow{\boldsymbol{\sigma}}_{n+1}\right) .
$$

Using the result of the problem 4, show that the eigenvectors of \mathbf{H} are linear combinations of vectors in which the number of up spins minus the number of down spins is fixed. Let $\left|\Psi_{n}\right\rangle$ be the state in which the spin n is down with all the other spins up. What is the action of \mathbf{H} on $\left|\Psi_{n}\right\rangle$?
(d) We are going to construct eigenvectors $\left|k_{s}\right\rangle$ of \mathbf{H} out of linear combinations of the $\left|\Psi_{n}\right\rangle$. Let

$$
\left|k_{s}\right\rangle=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} e^{\mathrm{i} k_{s} n \ell}\left|\Psi_{n}\right\rangle
$$

with

$$
k_{s}=\frac{2 \pi s}{N \ell}, \quad s=0,1, \ldots N-1
$$

Show that $\left|k_{s}\right\rangle$ is an eigenvector of \mathbf{H} and determine the energy eigenvalue E_{k}. Show that the energy is proportional to k_{s}^{2} as $k_{s} \rightarrow 0$. This state describes an elementary excitation called a spin wave or magnon with wavevector k_{s}.

