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Due 11:00am Wednesday, May 31, 2023

1. Landau Levels in an Electric Field. [If you did this problem last week, please

hand in your solution again.]

In lecture I gave several arguments that a quantum Hall droplet has a linearly-

dispersing edge mode. Here is a fully quantum mechanical argument. We’re going

to think about the physics in a neighborhood of the boundary of the sample,

where the confining potential V ' −Ex is slowly varying, and describes an

electric field E = −∂xV .

The Hamiltonian in the Landau gauge (the one used on the last homework) is

H =
1

2m

(
p2x + (py + eBx)2

)
− eEx. (1)

(a) Using the same ansatz as in the last homework, write the Hamiltonian as

that of a displaced harmonic oscillator.

(b) Conclude that the eigenstates have the form

ψ(x, y) = ψn,k

(
x− mE

eB2
, y

)
(2)

with energies

En,k = ~ωc
(
n+

1

2

)
+ eE

(
k`B −

eE

mω2
c

)
+
m

2

E2

B2
. (3)

(c) Plot this spectrum, and interpret ∂kEn,k as a velocity in the y direction.

(d) Compare this drift velocity with the classical behavior of a charged particle

in crossed E and B fields.

2. Interacting particles on a very small lattice.

Consider the Hamiltonian

H = −t
N∑
i=1

(
a†iai+1 + a†i+1ai

)
+ V

∑
i

nini+1

describing particles on a circular chain (ai+N = ai). Here ni ≡ a†iai. Assume

t, V > 0.
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(a) Suppose that the operators a are fermionic ({ai, aj} = δij). Suppose there

are only three (N=3) sites. Write the matrix form of the Hamiltonian acting

on the sector with exactly two fermions. Beware of signs. Find its eigenval-

ues and eigenvectors. Feel free to use some software (e.g. Mathematica or

Sympy). Compare to the case with exactly one fermion.

(b) Consider general N sites and exactly N −1 particles. Again compare to the

case of a single particle.

(c) Consider again N = 3 and exactly two particles, but now suppose that the

particles are bosons. Write down the matrix representation of the Hamilto-

nian in this case. Plot the spectrum as a function of V/t.

3. Brain-warmer: Spin rotations. The goal of this problem is to solve the

Transverse Field Ising Model in the mean field approximation.

(a) Show that

H(θ) ≡ −K
∑
i

(sin θXi + cos θZi) = −KU
∑
i

ZiU
†

where

U = e−iθ
∑

i Yi .

This is a global rotation about the y-axis.

(b) Conclude that the groundstate of H(θ) is

|θ〉 ≡ U⊗i |↑〉i .

(c) Compute m = 〈θ|Zi |θ〉.

(d) Impose the self-consistency condition that m is the expectation value used

to determine the mean field in

HTFIM ' HMFT = −J
∑
i

gXi−
∑
i

Zi

(
1

2

∑
neighbors j of i

〈Zj〉

)
= −J

∑
i

(
gXi −

1

2
zmZi

)
.

Plot θ as a function of g.

4. Two coupled spins.

This is a very useful warmup for the next problem. Consider a four-state system

consisting of two qbits,

H = span{|ε1〉 ⊗ |ε2〉 ≡ |ε1ε2〉 , ε =↑z, ↓z}.
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(a) For each qbit, define σ± ≡ 1
2

(σx ± iσy). (These are raising and lowering

operators for σz: [σz,σ±] = ±2σ±. Check this.)

Show that

~σ1 · ~σ2 = 2
(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
+ σz

1σ
z
2 .

Here, by for example σx
1 I mean the operator σx ⊗ 1 which acts as

σx ⊗ 1 |↑ ε2〉 = |↓ ε2〉 , σx ⊗ 1 |↓ ε2〉 = |↑ ε2〉 .

(b) Determine the action of the operator ~σ1 · ~σ2 on the basis states

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 .

(c) Show that the four vectors

|0, 0〉 =
1√
2

(|↑↓〉 − |↓↑〉) , |1, 1〉 ≡ |↑↑〉 , |1, 0〉 ≡ 1√
2

(|↑↓〉+ |↓↑〉) , |1,−1〉 ≡ |↓↓〉

are orthonormal and are eigenvectors of ~σ1 · ~σ2 with eigenvalues 1 or −3.

(d) Show that they are also eigenvectors of J2 ≡ (~σ1 + ~σ2)
2 and Jz ≡ σz

1 + σz
2

and find their eigenvalues.

(e) Consider the operator

P1,2 ≡
1

2
(1 + ~σ1 · ~σ2)

acting on the two spins. Show that P1,2 acts by exchanging the states of the

two spins:

P1,2 |ε1ε2〉 = |ε2ε1〉 .

(f) Show that the operator

Q1,2 ≡
1

4
(1−~σ1 · ~σ2)

acts as a projector onto the (singlet) state |0, 0〉.

5. Spin chains and spin waves.

A one-dimensional (SU(2)-symmetric) ferromagnet can be represented as a chain

of N qbits (spin-1/2 particles) numbered n = 0, ...N − 1, N � 1, fixed along

a line with a spacing ` between each successive pair. It is convenient to use

periodic boundary conditions, where the Nth spin is identified with the 0th spin:

n+N ≡ n. Suppose that each spin interacts only with its two nearest neighbors,

so the Hamiltonian can be written as

H =
1

2
NJ1 − 1

2
J
N−1∑
n=0

~σn · ~σn+1 .

where J is a coupling constant determining the strength of the interactions.
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(a) Show that all eigenvalues E of H are non-negative, and that the minimum

energy E0 (the ground state) is obtained in the state where all the spins

point in the same direction. A possible choice for the ground state |Φ0〉 is

then

|Φ0〉 = |↑z〉n=0 ⊗ |↑z〉n=1 ⊗ ...⊗ |↑z〉N−1 ≡ |↑↑ ... ↑〉 .

(b) Show that any state obtained from |Φ0〉 by rotating each of the spins by the

same angle is also a possible ground state.

[Hint: the generator of spin rotations ~J ≡
∑

n ~σn commutes with the Hamil-

tonian.]

[Cultural remark: the phenomenon of a ground state which does not preserve

a symmetry of the Hamiltonian is called spontaneous symmetry breaking. ]

(c) Now we wish to find the low-energy excitations above the ground state |Φ0〉.
Show that H can be written

H = NJ1 − J
N−1∑
n=0

Pn,n+1 = J
N−1∑
n=0

(1 − Pn,n+1) .

where

Pn,n+1 ≡
1

2
(1 + ~σn · ~σn+1) .

Using the result of the problem 4, show that the eigenvectors of H are linear

combinations of vectors in which the number of up spins minus the number

of down spins is fixed. Let |Ψn〉 be the state in which the spin n is down

with all the other spins up. What is the action of H on |Ψn〉?

(d) We are going to construct eigenvectors |ks〉 of H out of linear combinations

of the |Ψn〉. Let

|ks〉 =
1√
N

N−1∑
n=0

eiksn` |Ψn〉

with

ks =
2πs

N`
, s = 0, 1, ...N − 1 .

Show that |ks〉 is an eigenvector of H and determine the energy eigenvalue

Ek. Show that the energy is proportional to k2s as ks → 0. This state

describes an elementary excitation called a spin wave or magnon with wave-

vector ks.
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