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Physics 212C QM Spring 2020
Assignment 9 – Solutions

Due 11:00am Wednesday, June 7, 2023

1. Peierls’ instability.

On a previous homework, we studied a Hamiltonian describing (spinless) fermions

hopping on a chain:

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.

where un is some modulation of the hopping parameter. (The case we studied was

when un = un+2, and we regarded c2n and c2n−1 as two orbitals on a single site.)

Consider an extension of the model to include also phonon modes, i.e. degrees

of freedom encoding the positions of the ions in the solid. (Again we ignore the

spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the +x

direction), so the second term represents an elastic energy.

(a) Consider a configuration

un = φ(−1)n (1)

where the ions move closer in pairs. Compute the single-particle electronic

spectrum. (Hint: this enlarges the unit cell, making a fermionic analog of

the problem of phonons in salt. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknaak etc, where a is the lattice spacing.) You

should find that when φ 6= 0 there is a gap in the electron spectrum (unlike

φ = 0).

When doubling the unit cell, we halve the Brillouin zone. So even when
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φ = 0, the spectrum gets folded on itself, like this:
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This means that at half-filling, with φ = 0, it looks like there is a Dirac

point at k = π/2.

Now, including φ, it allows the two branches of the Dirac point to mix with

each other and produces a gap:

ε(k) = ±
√

cos2 k + φ2 sin2 k

which looks like this:

0.5 1.0 1.5 2.0 2.5 3.0
k

-1.0

-0.5

0.5

1.0

ϵk

ϕ=0

ϕ=1/2

Near the minimum gap at k = π/2, we can expand to find

ε(k =
π

2
+ δk) = ±

√
cos2 k(1− φ2) + φ2 = ±

√
δk2(1− φ2) + φ2. (2)

Comparing to the spectrum of a Dirac fermion with action

S[ψ, φ] =

∫
d2x

(
ψ̄i/∂ψ − φψ̄ψ

)
which has

H = γ0(iγ1∂x − φ) =

(
φ k

k −φ

)
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and therefore

εk = ±
√
k2 + φ2

which agrees with (2) at small k (which is really the deviation from k = π/2)

and small φ.

(b) Compute the many-body groundstate energy of HF in the configuration (1),

at half-filling (i.e. the number of electrons is half the number of available

states).

Compute HE in this configuration, and minimize (graphically) the sum of

the two as a function of φ.

At half-filling, in the groundstate the lower band is filled. Note that the

Brillouin Zone only extends from 0 to π now. The electronic energy density

is

EF (φ) = −
∮ π

0

dk

√
cos2 k + φ2 sin2 k = − 1

π
EllipticE(1− φ2).

For 8K2 = .2 the total energy looks like this:
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There is a minimum at φ2 6= 0, i.e. two minima at φ = ±φ0. Increasing φ

lowers the total energy because it lowers the energy of the filled states.

(c) [Bonus problem] For large K, the value of φ at the minimum is pushed

towards small values of φ. In that regime, we can approximate the electronic

energy by the first few terms of its expansion about φ = 0. Find an analytic

expression for the minimum φ in this regime.

Actually, it is not quite analytic at φ = 0, in the sense that e.g. E ′′F (0) =∫ π
0

d̄k sin2 k
| cos k| has a logarithmic divergence at k = π/2. If we instead keep φ 6= 0

but infinitesimal, the divergence is cut off by φ itself:

E ′′F (φ� 1) =

∫
d̄k

sin2 k√
cos2 k + φ2 sin2 k

∼ log φ.
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So this means there is a φ2 log φ term. Mathematica’s Series function will

tell you (correctly) that

− 1

π
EllipticE(1− φ2) = − 1

π
+

1

4π
(1− log 4φ2)φ2 +O(φ3)

so the total energy is approximately

− 1

π
+

1

4π
(1− log 4φ2)φ2 +O(φ3) + 2Kφ2

whose minimum occurs when

φ = 4e−1−2Kπ.

In retrospect, our approximation that φ is small when K is small is quite

excellent.

(d) [Bonus problem: emergence of the Dirac equation] We can take a continuum

limit of the above results. First, show that the low-energy excitations of

H0 at a generic value of the filling are described the the massless Dirac

Hamiltonian in 1+1 dimensions. The single-particle Dirac Hamiltonian in

position space is: hDirac = γ0(iγ1∂x + m) where m is the mass, and γ0 =

σ1, γ1 = iσ2 are 2× 2 matrices.

Show that the right-movers are right-handed (meaning eigenvectors of γ5 ≡
γ0γ1 with eigenvalue 1) and the left-movers are left-handed (eigenvalue −1).

This system has a conserved charge N ≡
∑

n c
†
ncn counting the number of

fermions, which we get to pick. The easiest way to do this is to add a

chemical potential H → H −µN and choose µ to get the desired number of

particles on average. (This is the same as fixing the number of particles in

the thermodynamic limit.) In that case we have

H = −t
∑
n

c†ncn+1 + h.c.− µ
∑
n

c†ncn =

∮
BZ

d̄kc†kckεk

with εk = −2t cos ka− µ, and the integral is over the Brillouin zone. a = 1

is the lattice spacing. By ‘generic filling’ I mean choose the number of

particles per site to be between 0 and 1. The former and latter correspond

to choosing µ = ±2t at the bottom or top of the band, where the dispersion

is quadratic, rather than linear.

We can focus on the physics at the two Fermi points k = ±kF (where kF
solves εkF = 0) by plugging in

ψ(x) '
∫
R

d̄ke(kF +k)xψR +

∫
R

d̄ke(−kF +k)xψL
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where R is a small-enough region in momentum space that the two domains

don’t overlap. This gives

H =

∫
R

d̄k
(
vFkψ

†
RψR − vFkψ

†
LψL

)
where vF ≡ ∂kεk|k=kF . Translating into an action, setting vF = 1, and

pretending R goes on forever (this is how we can fool ourselves that the

chiral current is conserved), this is

S =

∫
dxdt

(
ψ†R (∂t − ∂x)ψR + ψ†L (∂t + ∂x)ψL

)
=

∫
d2x

(
Ψ̄γµ∂µΨ

)
with

Ψ =

(
ψL
ψR

)
and

γ0 = σ1, γ1 = iσ2, γ5 ≡ γ0γ1 = −σ3.

This gives

γ5Ψ = −σ3

(
ψL
ψR

)
=

(
−ψL
ψR

)
so indeed the left-moving particle has left-handed chirality.

(e) [Bonus problem] Next, include the coupling to phonons in the Dirac Hamil-

tonian. Expand the spectrum near the minimum gap and include the effects

of the field φ in the continuum theory.

φ couples like the mass term.

(f) [Bonus problem] You should find above that the energy is independent of

the sign of φ. This means that there are two groundstates. We can consider

a domain wall between a region of + and a region of −. Show that this

domain wall carries a fermion mode whose energy lies in the bandgap and

has fermion number ±1
2
.

The basic idea is that φ must go through zero in between. The existence of

a mid-gap fermion mode can be shown by solving the Dirac equation in the

background of the domain wall. [This result is due to Jackiw and Rebbi.] In

particular, the two states (zero-mode occupied and zero-mode unoccupied)

must have a fermion number which differ by 1, but they are related to each

other by the symmetry which exchanges particles and holes, so they must

have fermion number ±1
2
.
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(g) [Bonus problem] Diagonalize the relevant tight-binding matrix and find the

mid-gap fermion mode.

Here is the spectrum of a chain (of length 40) with φ = +0.5 everywhere:
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And here is the result when φ switches to −0.5 in the middle:
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The wavefunctions of the states in the middle look like
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eigenfunctions of the midgap states
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(h) [Bonus problem] Time-reversal played an important role here. If we allow

complex hopping amplitudes, show that we can make a domain wall without

midgap modes.

If the mass is allowed to be complex, then we can interpolate between −m
and +m without going through m = 0.

2. Jordan-Wigner solution of the TFIM chain.

Let’s look at the TFIM again:

HTFIM = −J
∑
j

(gXj + ZjZj+1)

has a phase transition between large-g and small-g phases.

(a) Verify the following statements.

(Disordered) large g: excitations are created by Zj – they are spin flips. The

groundstate is a condensate of domain walls: 〈τ z〉 6= 0. Here τ zj̄ ≡
∏

j>j̄ Xj

is the operator which creates a domain wall between sites j and j + 1.

(Ordered) small g: excitations are created by the ‘disorder’ operator τ zj̄ –

they are domain walls. The groundstate is a condensate of spins 〈Zj〉 6= 0,

i.e. a ferromagnet.

So we understand what are the ‘correct variables’ (in the sense that they

create the elementary excitations above the groundstate) at large and small

g. I claim that the Correct Variables everywhere in the phase diagram are

obtained by “attaching a spin to a domain wall”. These words mean the

following: let

χj ≡ Zjτ
z
j+ 1

2
= Zj

∏
j′>j

Xj′

χ̃j ≡ Yjτ
z
j+ 1

2
= −iZj

∏
j′≥j

Xj′ (3)

The first great virtue of this definition is that these operators agree with

the creators of the elementary excitations in both regimes we’ve studied:

When g � 1, 〈Zj〉 ' 1 and more strongly, Zj = 〈Zj〉 + small, so χj '
〈Zj〉 τ zj+ 1

2

' τ z
j+ 1

2

, the domain wall creation operator. Similarly, when g � 1,

τ zj ' 1+ small, so χj ' Zj

〈
τ z
j+ 1

2

〉
' Zj, which is the spin flipper on the

paramagnetic vacuum.

(b) Now let us consider the algebra of these χs. Verify that

• They are real: χ†j = χj, χ̃
†
j = χ̃j.
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and

• They are fermionic:

if i 6= j, χjχi + χiχj ≡ {χj,χi} = 0, {χ̃j, χ̃i} = 0, {χj, χ̃i} = 0. (4)

This is because the spin flip Zj in χj changes sign when it moves through

the domain wall created by χi.

When they are at the same site:

χ2
j = 1 = χ̃2

j . In summary: {χi,χj} = 2δij, {χ̃i, χ̃j} = 2δij, .

Notice that (4) means that χi cares about χj even if |i− j| � 1. Fermions

are weird and non-local!

Recall from a previous homework that real fermion operators like this are called

Majorana fermion operators. We can make more familiar-looking objects by

making complex combinations:

cj ≡
1

2
(χj − iχ̃j) =⇒ c†j =

1

2
(χj + iχ̃j)

These satisfy the more familiar anticommutation relations:

{ci, c†j} = δij, {ci, cj} = 0, {c†i , c
†
j} = 0,

and in particular,
(
c†i

)2

= 0, like a good fermion creation operator should.

We can write HTFIM in terms of the fermion operators. We just need to know

how to write Xj and ZjZj+1.

(c) Show that the operator that counts spin flips in the paramagnetic phase is

Xj = −iχ̃jχj = −2c†jcj + 1 = (−1)c
†
jcj .

To get this we can use (3) and YZ = iX and (τ z)2 = 1. Even better: notice

that χ̃j = +iXjχj. Here c†jcj = nj measures the number of fermions at the

site j and is either 0 or 1, since they are fermions. At each site

|→j〉 = |nj = 0〉 , |←j〉 = |nj = 1〉

like in the one-mode case discussed in lecture. The number of spin flips is

the number of fermions.
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(d) Show that the operator that counts domain walls is

ZjZj+1 = iχ̃j+1χj.

Check: iχ̃j+1χj = iYj+1

∏
k≥j+2 XkZj

∏
l≥j+1 Xl =

iYj+1Xj+1︸ ︷︷ ︸
=Zj+1

Zj.

(e) Conclude that

HTFIM = −J
∑
j

(iχ̃j+1χj + giχjχ̃j)

is quadratic in these variables, for any g! Free at last!

Comments:

• Notice that the relation

Xj = 1− 2c†jcj

is exactly implementing the simple idea that spinless fermions on a

lattice produce two-states per site which we can regard as spin up or

spin down (in this case it’s up or down along x): The states X = ±1

correspond to c†c = 0 and 1 respectively.

• Notice that the description in terms of majoranas is preferred over the

complex fermions because the phase rotation symmetry generated by

the fermion number c†c is not a symmetry of HTFIM – in terms of the

cs, it contains terms of the form cjcj+1 which change the total number

of c fermions (by ±2). It is the hamiltonian for a superconductor, in

which the continuous fermion number symmetry is broken down to a

Z2 subgroup. Fermion number is still conserved mod two, and this is

the Z2 symmetry of the Ising model, which acts by Z→ −Z.

• A useful thing to remember about majorana operators {χ, γ} = 0 is

that (iχγ)† = −iγχ = +iχγ is hermitian.

• Another useful fact:

c(−1)c
†c = −c (5)

which is true because the BHS only nonzero if the number is nonzero

before the annihilation operator acts, in which case we get (−1)1. Sim-

ilarly (the conjugate equation), (−1)c
†cc† = −c†, and (−1)c

†cc = c and

so on.

• This procedure of “attaching spin to a domain wall” led to fermions.

This maybe isn’t so surprising in one dimension. But there are analogs

of this procedure in higher dimensions. In 2+1 dimensions, an analog

9



is to attach charge to a vortex (or to attach magnetic flux to charge).

This leads to transmutation of statistics from bosons to fermions and

more generally to anyons and the fractional quantized Hall effect. In

3+1 dimensions, an analog is attaching charge to a magnetic monopole

to produce a ‘dyon’; in this case, the angular momentum carried by the

EM fields is half-integer.

(f) The hamiltonian is quadratic in the cs, too, since they are linear in the χs.

In terms of complex fermions, show that

Xj = 1−2c†jcj, Zj = −
∏
i>j

(1−2c†ici)
(
cj + c†j

)
= −

∏
i>j

(−1)c
†
ici
(
cj + c†j

)
.

In terms of their Fourier modes ck ≡ 1√
N

∑
j cje

−ikxj , show that the TFIM

hamiltonian is

HTFIM = J
∑
k

(
2(g − cos ka)c†kck − i sin ka

(
c†−kc

†
k + c−kck

)
− g
)
.

(g) This Hamiltonian is quadratic in cks, but not quite diagonal. It involves

c†c† terms, and is like a mean-field model of a superconductor. The solution

for the spectrum involves one more operation the fancy name for which is

‘Bogoliubov transformation’, which is the introduction of new (complex)

mode operators which mix particles and holes:

γk = ukck − ivkc
†
−k

Demanding that the new variables satisfy canonical commutators {γk,γ†k′} =

δk,k′ requires uk = cos (φk/2) , vk = sin (φk/2). We fix the angles φk by

demanding that the hamiltonian in terms of γk be diagonal – no γkγ−k
terms. Show that the resulting condition is tanφk = ε2(k)

ε1(k)
with ε1(k) =

2J(g − cos ka), ε2(k) = −2J sin ka, and H =
∑

k εk

(
γ†kγk − 1

2

)
, with εk =√

ε21 + ε22.

The end result is that the exact single-particle (single γ) dispersion is

εk = 2J
√

1 + g2 − 2g cos ka .

The argument of the sqrt is positive for g ≥ 0. This is minimized at k = 0,

which tells us the exact gap at all g:

εk ≥ ε0 = 2J |1− g| = ∆(g)

which, ridiculously, is just what we got from 1st order perturbation theory

on each side of the transition.
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3. Brain-warmer. Suppose we have a wavefunction Ψ of N bosons on a thin ring

of radius R, governed by a Hamiltonian of the form

H =
∑
i

p2
i

2m
+
∑
i<j

V (|rij|).

Let θi be the angular coordinate of the ith particle. Now suppose we make a new

state Ψ′ = e−i
∑

i θiΨ. Show that

〈Ψ′|H |Ψ′〉 = 〈Ψ|H |Ψ〉 − ωcL+
1

2
Iclω

2
c

where L is the expected angular momentum of the state |Ψ〉, ωc ≡ ~
mR2 , Icl =

NmR2.

In cylindrical coordinates,

p2 = −~2

(
∂2
r +

1

r2
∂2
θ

)
So the key bit is

~2

2m

∫
Ψ?e+i

∑
i θi
∑
i

1

R2
∂2
θi

(
e−i

∑
i θiΨ

)
and we use the identity ∂2

θ (f1f2) = f ′′1 f2 + 2f ′1f
′
2 + f ′′2 . The first term is N ~2

2mR2 =
1
2
Iclω

2
c . The cross-term is

−〈Ψ|L |Ψ〉 ~
mR2

= −ωcL

where L = −
∑

i i~∂θi is the total angular momentum operator.

4. Excitations and energy of a weakly-interacting bose fluid. [Khomski

§5.2]

We can see the appearance of the sound mode in the continuum by the following

treatment, where we regard the interaction strength as weak.

(a) Write the Hamiltonian

H =
∑
p

b†pbp
p2

2m
+

∫
ddr

∫
ddr′V (|r − r′|)b†rb

†
r′br′br

entirely in terms of the momentum-space operators bp,b
†
p. After doing this,

specialize to the case of contact interactions, i.e. V (rij) = Uδd(rij).
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Using continuum normalization br = 1√
V

∑
p e

ip·rbp,

H =
∑
p

b†pbp
p2

2m
+

∫
ddr

∫
ddr′b†rb

†
r′br′brV (|r − r′|) (6)

=
∑
p

b†pbp
p2

2m
+

U

2V

∑
p1···p4

δd(p1 + p2 − p3 − p4)Ṽ (p1 − p4)b†p1b
†
p2

bp3bp4 .

(7)

where Ṽ (p) =
∫
ddreip·rV (r). Specializing to the case of contact interactions

means Ṽ is a constant.

(b) Here is the trick. In the BEC state, b†0b0 = N0 ∼ N . We will approximate

such a state as a coherent state for b0 with eigenvalue b0 ∼
√
N � 1,

a complex number. Since the commutator [b†0,b] = 1 � N we make a

small error by this approximation. We will treat all the other creation and

annihilation operators bp 6=0 as operators, but as small. That is, b0 ∼ b0 =

O(
√
N),bp = O(N0).

Expand the Hamiltonian keeping only the terms of order N and larger,

according to this counting.

To eliminate b0, use the fact that the total number of particles is

N = |b0|2 +
∑
p 6=0

b†pbp

to write it in terms of bp 6=0,b
†
p 6=0.

The terms that survive must have at least two b0s:

H '
∑
p

b†pbp
p2

2m
+
U

2V

(
|b0|4 +

∑
p

(
4b†pbp|b0|2 + |b0|2b†pb

†
−p + |b0|2bpb−p

))
.

Following the hint, in this approximation, the b4
0 term is

b4
0 =

(
N −

∑
p 6=0

b†pbp

)2

= N2 − 2N
∑
p 6=0

b†pbp +O(N0).

And to this order, we can replace |b0|2 with N in the O(N) terms:

H '
∑
p

b†pbp
p2

2m
+

U

2V

(
N2 −N

∑
p

(
2b†pbp + b†pb

†
−p + bpb−p

))
.
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(c) In the previous part you found a hamiltonian that is quadratic in the

bp 6=0,b
†
p 6=0. This is an Easy Problem (according to our classification). One

way to solve it is to substitute

b†p = upap + vpa
†
−p, bp = upa

†
p + vpa−p

where the coefficients up, vp are to be determined and can be assumed to be

real, and even functions of p. [This is called a Bogoliubov transformation.]

Show that demanding that ap, a
†
p satisfy canonical boson commutation re-

lations implies u2
p − v2

p = 1. Find ap in terms of bp,b
†
p.

Just plug the definition in to 1 = [ap, a
†
p]. The condition [ap, ap′ ] = 0 is

automatic.

Using this relation, consider the combination

upb
†
p − vpb−p = u2

pap + upvpa
†
−p − vpupa

†
−p − v2

pap = (u2
p − v2

p)ap = ap.

The expression for a†p = upbp − vpb†−p is the complex conjugate of the pre-

vious equation.

(d) To determine up, vp (or αp in up = coshαp) demand that the off-diagonal

terms drop out of the Hamiltonian

H =
∑
p 6=0

εpa
†
pap + C.

[Hint: to solve this condition, I recommend making the substitution up =
1√
A2

p−1
, and solving for Ap.]

Find the resulting energy spectrum εp and [bonus problem] the c-number

term C.

The quadratic terms in the hamiltonian are of the form∑
p 6=0

(
tp

(
b†pbp + b†−pb−p

)
+ ∆p

(
b†pb

†
−p + bpb−p

))
=
∑
p 6=0

(
tp

(
2v2

p + (u2
p + v2

p)
(
a†pap + a†−pa−p

)
+ 2upvp (apa−p + h.c.)

)
+∆p

(
2upvp

(
a†pap + a†−pa−p + 1

)
+ (u2

p + v2
p) (apa−p + h.c.)

))
(8)

!
=
∑
p 6=0

εpa
†
pap + C (9)

The coefficient of the off-diagonal term apa−p is

0
!

= tp2upvp + ∆p(u
2
p + v2

p) (10)
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and

εp = 2
(
tp(u

2
p + v2

p) + 2∆pupvp
)
,

C = 2
∑
p 6=0

(
tpv

2
p + ∆pupvp

)
= 2

∑
p 6=0

(
tp

(
−1

2
(u2

p − v2
p) +

1

2
(u2

p + v2
p)

)
+ ∆pupvp

)
(11)

=
1

2

∑
p 6=0

(εp − 2tp) . (12)

Here 2tp = p2

2m
− NU

V
= p2

2m
− nU and ∆p = −NU

2V
= −nU/2.

With the suggested substitution, the demand (10) becomes

0 =
tA+ ∆(1 + A2)

1− A2
↔ A =

−t±
√
t2 −∆2

∆
.

In terms of A,

u2 + v2 =
1 + A2

1− A2
=

±t√
t2 −∆2

, 2uv =
2A

1− A2
=

∓∆√
t2 −∆2

.

Therefore

εp = 2
±t2p ∓∆2

p√
t2p −∆2

p

= ±2
√
t2p −∆2

p.

Clearly we have to pick the upper sign so that the energy is positive.

(e) Expand εp about p = 0 and find a phonon mode. Determine the speed of

sound. What does εp do at large p?

The dispersion is

εp = 2
√
t2p −∆2

p =

√(
p2

2m
− nU

)2

− (−nU)2 =

√
nUp2

m
+

(
p2

2m

)2
p→0
' |p|

√
nU/m

p→∞
' p2

2m
.

The speed of sound is then
√
nU/m.

(f) [bonus problem] How does the groundstate energy density E/V depend on

the density n = N/V and the scattering length a ≡ mU
4π

?

The groundstate energy is just C above plus the constant term in H. This

is a bonus problem because the integral is not finite. We can regulate it by

putting a cutoff Λ�
√
m3Un on the momentum.
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The integral, in the large-volume limit and in d = 3, is then

E0

V
=
UN2

2V 2
+

1

2

∫
d̄3p

(√
t2p −∆2

p − tp
)

(13)

=
Un2

2
+

1

2

4π

(2π)3

∫ Λ

0

dpp2

√( p2

2m

)2

+
Unp2

m
−
(
p2

2m
+ Un

) .

(14)

Notice that the integral only depends on U and n = N/V in the combination

Un. Here Λ is a UV cutoff, which we take to be bigger than anything.

Expanding about Λ → ∞ (In Mathematica, Series[ f(Λ), {Λ, 0, 2}]), we

find

E0

V
=

1

2
Un2 +

1

(2π)2

(
−m(Un)2Λ +

32

15
(mUn)5/2 +O(Λ−1)

)
So the bit proportional to n2 is not so meaningful, since it depends on the

cutoff, but the term proportional to n5/2 seems to be universal.
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