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1. Peierls’ instability.

On a previous homework, we studied a Hamiltonian describing (spinless) fermions

hopping on a chain:

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.

where un is some modulation of the hopping parameter. (The case we studied was

when un = un+2, and we regarded c2n and c2n−1 as two orbitals on a single site.)

Consider an extension of the model to include also phonon modes, i.e. degrees

of freedom encoding the positions of the ions in the solid. (Again we ignore the

spins of the electrons for simplicity.)

H = −t
∑
n

(1 + un)c†ncn+1 + h.c.+
∑
n

K(un − un+1)2 ≡ HF +HE.

Here un is the deviation of the nth ion from its equilibrium position (in the +x

direction), so the second term represents an elastic energy.

(a) Consider a configuration

un = φ(−1)n (1)

where the ions move closer in pairs. Compute the single-particle electronic

spectrum. (Hint: this enlarges the unit cell, making a fermionic analog of

the problem of phonons in salt. Define c2n ≡ an, c2n+1 ≡ bn, and solve in

Fourier space, an ≡
∮

d̄ke2iknaak etc, where a is the lattice spacing.) You

should find that when φ 6= 0 there is a gap in the electron spectrum (unlike

φ = 0).

(b) Compute the many-body groundstate energy of HF in the configuration (1),

at half-filling (i.e. the number of electrons is half the number of available

states).

Compute HE in this configuration, and minimize (graphically) the sum of

the two as a function of φ.
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(c) [Bonus problem] For large K, the value of φ at the minimum is pushed

towards small values of φ. In that regime, we can approximate the electronic

energy by the first few terms of its expansion about φ = 0. Find an analytic

expression for the minimum φ in this regime.

(d) [Bonus problem: emergence of the Dirac equation] We can take a continuum

limit of the above results. First, show that the low-energy excitations of

H0 at a generic value of the filling are described the the massless Dirac

Hamiltonian in 1+1 dimensions. The single-particle Dirac Hamiltonian in

position space is: hDirac = γ0(iγ1∂x + m) where m is the mass, and γ0 =

σ1, γ1 = iσ2 are 2× 2 matrices.

Show that the right-movers are right-handed (meaning eigenvectors of γ5 ≡
γ0γ1 with eigenvalue 1) and the left-movers are left-handed (eigenvalue −1).

(e) [Bonus problem] Next, include the coupling to phonons in the Dirac Hamil-

tonian. Expand the spectrum near the minimum gap and include the effects

of the field φ in the continuum theory.

(f) [Bonus problem] You should find above that the energy is independent of

the sign of φ. This means that there are two groundstates. We can consider

a domain wall between a region of + and a region of −. Show that this

domain wall carries a fermion mode whose energy lies in the bandgap and

has fermion number ±1
2
.

(g) [Bonus problem] Diagonalize the relevant tight-binding matrix and find the

mid-gap fermion mode.

(h) [Bonus problem] Time-reversal played an important role here. If we allow

complex hopping amplitudes, show that we can make a domain wall without

midgap modes.

2. Jordan-Wigner solution of the TFIM chain.

Let’s look at the TFIM again:

HTFIM = −J
∑
j

(gXj + ZjZj+1)

has a phase transition between large-g and small-g phases.

(a) Verify the following statements.

(Disordered) large g: excitations are created by Zj – they are spin flips. The

groundstate is a condensate of domain walls: 〈τ z〉 6= 0. Here τ zj̄ ≡
∏

j>j̄ Xj

is the operator which creates a domain wall between sites j and j + 1.
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(Ordered) small g: excitations are created by the ‘disorder’ operator τ zj̄ –

they are domain walls. The groundstate is a condensate of spins 〈Zj〉 6= 0,

i.e. a ferromagnet.

So we understand what are the ‘correct variables’ (in the sense that they

create the elementary excitations above the groundstate) at large and small

g. I claim that the Correct Variables everywhere in the phase diagram are

obtained by “attaching a spin to a domain wall”. These words mean the

following: let

χj ≡ Zjτ
z
j+ 1

2
= Zj

∏
j′>j

Xj′

χ̃j ≡ Yjτ
z
j+ 1

2
= −iZj

∏
j′≥j

Xj′ (2)

The first great virtue of this definition is that these operators agree with

the creators of the elementary excitations in both regimes we’ve studied:

When g � 1, 〈Zj〉 ' 1 and more strongly, Zj = 〈Zj〉 + small, so χj '
〈Zj〉 τ zj+ 1

2

' τ z
j+ 1

2

, the domain wall creation operator. Similarly, when g � 1,

τ zj ' 1+ small, so χj ' Zj

〈
τ z
j+ 1

2

〉
' Zj, which is the spin flipper on the

paramagnetic vacuum.

(b) Now let us consider the algebra of these χs. Verify that

• They are real: χ†j = χj, χ̃
†
j = χ̃j.

and

• They are fermionic:

if i 6= j, χjχi + χiχj ≡ {χj,χi} = 0, {χ̃j, χ̃i} = 0, {χj, χ̃i} = 0. (3)

When they are at the same site:

χ2
j = 1 = χ̃2

j . In summary: {χi,χj} = 2δij, {χ̃i, χ̃j} = 2δij, .

Notice that (3) means that χi cares about χj even if |i− j| � 1. Fermions

are weird and non-local!

Recall from a previous homework that real fermion operators like this are called

Majorana fermion operators. We can make more familiar-looking objects by

making complex combinations:

cj ≡
1

2
(χj − iχ̃j) =⇒ c†j =

1

2
(χj + iχ̃j)
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These satisfy the more familiar anticommutation relations:

{ci, c†j} = δij, {ci, cj} = 0, {c†i , c
†
j} = 0,

and in particular,
(
c†i

)2

= 0, like a good fermion creation operator should.

We can write HTFIM in terms of the fermion operators. We just need to know

how to write Xj and ZjZj+1.

(c) Show that the operator that counts spin flips in the paramagnetic phase is

Xj = −iχ̃jχj = −2c†jcj + 1 = (−1)c
†
jcj .

(d) Show that the operator that counts domain walls is

ZjZj+1 = iχ̃j+1χj.

(e) Conclude that

HTFIM = −J
∑
j

(iχ̃j+1χj + giχjχ̃j)

is quadratic in these variables, for any g! Free at last!

(f) The hamiltonian is quadratic in the cs, too, since they are linear in the χs.

In terms of complex fermions, show that

Xj = 1−2c†jcj, Zj = −
∏
i>j

(1−2c†ici)
(
cj + c†j

)
= −

∏
i>j

(−1)c
†
ici
(
cj + c†j

)
.

In terms of their Fourier modes ck ≡ 1√
N

∑
j cje

−ikxj , show that the TFIM

hamiltonian is

HTFIM = J
∑
k

(
2(g − cos ka)c†kck − i sin ka

(
c†−kc

†
k + c−kck

)
− g
)
.

(g) This Hamiltonian is quadratic in cks, but not quite diagonal. It involves

c†c† terms, and is like a mean-field model of a superconductor. The solution

for the spectrum involves one more operation the fancy name for which is

‘Bogoliubov transformation’, which is the introduction of new (complex)

mode operators which mix particles and holes:

γk = ukck − ivkc
†
−k

Demanding that the new variables satisfy canonical commutators {γk,γ†k′} =

δk,k′ requires uk = cos (φk/2) , vk = sin (φk/2). We fix the angles φk by de-

manding that the hamiltonian in terms of γk be diagonal – no γkγ−k terms.
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Show that the resulting condition is tanφk = ε2(k)
ε1(k)

with ε1(k) = 2J(g −

cos ka), ε2(k) = −J sin ka, and H =
∑

k εk

(
γ†kγk − 1

2

)
, with εk =

√
ε21 + ε22.

The end result is that the exact single-particle (single γ) dispersion is

εk = 2J
√

1 + g2 − 2g cos ka .

The argument of the sqrt is positive for g ≥ 0. This is minimized at k = 0,

which tells us the exact gap at all g:

εk ≥ ε0 = 2J |1− g| = ∆(g)

which, ridiculously, is just what we got from 1st order perturbation theory

on each side of the transition.

3. Brain-warmer. Suppose we have a wavefunction Ψ of N bosons on a thin ring

of radius R, governed by a Hamiltonian of the form

H =
∑
i

p2
i

2m
+
∑
i<j

V (|rij|).

Let θi be the angular coordinate of the ith particle. Now suppose we make a new

state Ψ′ = e−i
∑

i θiΨ. Show that

〈Ψ′|H |Ψ′〉 = 〈Ψ|H |Ψ〉 − ωcL+
1

2
Iclω

2
c

where L is the expected angular momentum of the state |Ψ〉, ωc ≡ ~
mR2 , Icl =

NmR2.

4. Excitations and energy of a weakly-interacting bose fluid.

We can see the appearance of the sound mode in the continuum by the following

treatment, where we regard the interaction strength as weak.

(a) Write the Hamiltonian

H =
∑
p

b†pbp
p2

2m
+

∫
ddr

∫
ddr′V (|r − r′|)b†rb

†
r′br′br

entirely in terms of the momentum-space operators bp,b
†
p. After doing this,

specialize to the case of contact interactions, i.e. V (rij) = Uδd(rij).
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(b) Here is the trick. In the BEC state, b†0b0 = N0 ∼ N . We will approximate

such a state as a coherent state for b0 with eigenvalue b0 ∼
√
N � 1,

a complex number. Since the commutator [b†0,b] = 1 � N we make a

small error by this approximation. We will treat all the other creation and

annihilation operators bp 6=0 as operators, but as small. That is, b0 ∼ b0 =

O(
√
N),bp = O(N0).

Expand the Hamiltonian keeping only the terms of order N and larger,

according to this counting.

To eliminate b0, use the fact that the total number of particles is

N = |b0|2 +
∑
p 6=0

b†pbp

to write it in terms of bp 6=0,b
†
p 6=0.

(c) In the previous part you found a hamiltonian that is quadratic in the

bp 6=0,b
†
p 6=0. This is an Easy Problem (according to our classification). One

way to solve it is to substitute

b†p = upap + vpa
†
−p, b†p = upa

†
p + vpa−p

where the coefficients up, vp are to be determined and can be assumed to be

real, and even functions of p.

Show that demanding that ap, a
†
p satisfy canonical boson commutation re-

lations implies u2
p − v2

p = 1. Find ap in terms of bp,b
†
p.

(d) To determine up, vp (or αp in up = coshαp) demand that the off-diagonal

terms drop out of the Hamiltonian

H =
∑
p 6=0

εpa
†
pap + C.

[Hint: to solve this condition, I recommend making the substitution up =
1√
A2

p−1
, and solving for Ap.]

Find the resulting energy spectrum εp and [bonus problem] the c-number

term C.

(e) Expand εp about p = 0 and find a phonon mode. Determine the speed of

sound. What does εp do at large p?

(f) [bonus problem] How does the groundstate energy density E/V depend on

the density n = N/V and the scattering length a ≡ mU
4π

?
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