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1. Antiferromagnet from fermions. In lecture, we discussed the idea of getting

a magnet from a Mott insulator, where the electrons are stuck in place by mutual

repulsion, but can still have a spin degree of freedom. In such a system, what

determines the interactions between the spins?

Consider the hamiltonian

H = −t
∑
σ

(
c†1σc2σ + h.c.

)
+ U (n1↑n1↓ + n2↑n2↓) ≡ Ht + HU

with t, U > 0. Here the cs are canonical fermion operators: {ciσ, c†jσ′} = δijδσσ′ ,

{ciσ, cjσ′} = 0. σ =↑, ↓ labels the electron spin and niσ ≡ c†iσciσ is the number

operator. This is the fermionic Hubbard model on just two sites, i = 1, 2.

In this problem we will think about the sector of states with exactly two electrons

i.e. we only consider states |ψ〉 with(∑
i,σ

niσ − 2

)
|ψ〉 = 0.

(a) First, enumerate all the states with two electrons (make sure to be careful

about defining their signs).

Let’s call them

|1〉 ≡ c†1↑c
†
2↑ |0〉 = |↑, ↑〉 (1)

|2〉 ≡ c†1↑c
†
2↓ |0〉 = |↑, ↓〉 (2)

|3〉 ≡ c†1↓c
†
2↑ |0〉 = |↓, ↑〉 (3)

|4〉 ≡ c†1↓c
†
2↓ |0〉 = |↓, ↓〉 (4)

|5〉 ≡ c†1↑c
†
1↓ |0〉 = |↑↓, ·〉 (5)

|6〉 ≡ c†2↑c
†
2↓ |0〉 = |·, ↑↓〉 . (6)

Note that the order in which we create the fermions is a sign convention

which we are defining here.
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(b) Next, consider U/t = ∞. How many groundstates does the system have if

there are two electrons in total? Write down these ground states.

States |5〉 , |6〉 have energy U , and states |1〉 , · · · , |4〉 have energy 0, so they

are the degenerate groundstates, i.e.X = span{|1〉 , · · · |4〉}.

Now consider U/t � 1 (but not infinite). We will do degenerate perturbation

theory to find an effective Hamiltonian action on the degenerate groundspace, X.

(c) Show that at first order in t/U , the perturbing hamiltonian Ht always takes

us out of the degenerate subspace, X.

If in any of the states |1〉 through |4〉 we move a single fermion, it leads to

two fermions on top of each other, which costs energy U .

(d) Recall that at second order, the matrix elements of the effective Hamiltonian

take the form

〈a|Heff |b〉 = −
∑
n/∈X

〈a|Ht |n〉
1

〈n|HU |n〉
〈n|Ht |b〉

where |a〉 , |b〉 belong to the degenerate subspace X, and |n〉 does not. Show

that the effective Hamiltonian is (up to an additive constant)

Heff = J~S1 · ~S2

where ~Si ≡ 1
2
c†i~σci. Find the value of J in terms of t and U .

The nonzero matrix elements are

〈2|Ht |6〉 = t, 〈2|Ht |5〉 = −t, 〈3|Ht |6〉 = −t, 〈3|Ht |5〉 = +t.

This gives e.g.

(Heff)2,2 =
〈2|Ht |5〉 〈5|Ht |2〉

−U
+
〈2|Ht |6〉 〈6|Ht |2〉

−U
= −2

t2

U

while

(Heff)2,3 =
〈2|Ht |5〉 〈5|Ht |3〉

−U
+
〈2|Ht |6〉 〈6|Ht |3〉

−U
= +2

t2

U

Therefore, the effective hamiltonian is

h =


0 0 0 0

0 −2t2

U
+2t2

U
0

0 2t2

U
−2t2

U
0

0 0 0 0


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The eigenvalues of h are 0, 0, 0,−4t2

U
and the eigenvectors are, respectively,

|↑↑〉 , |↑↓〉+|↓↑〉√
2

, |↓↓〉 (with eigenvalue zero) and |↑↓〉−|↓↑〉√
2

with eigenvalue −4 t
2

U
.

This should look familiar: the groundstate is the total SU(2) singlet, and the

total SU(2) triplet is the excited state. The whole thing is SU(2) symmetric,

and this is the same spectrum as

Heff = +
4t2

U
~S1 · ~S2

(plus a constant).

(e) Now redo the whole problem for hard-core bosons. (By hard-core, I mean

we forbid
(
b†i↑

)2

but allow b†i↑b
†
i↓.) Compare the answer.

The only difference is that we erase the relative signs on the matrix elements

〈2|Ht |6〉 = t, 〈2|Ht |5〉 = t, 〈3|Ht |6〉 = t, 〈3|Ht |5〉 = +t.

This has the consequence that

h =


0 0 0 0

0 2t2

U
+2t2

U
0

0 2t2

U
2t2

U
0

0 0 0 0


whose spectrum is 0, 0, 0, 4t2

U
with the same respective eigenvectors, and now

the singlet is the excited state. It is a ferromagnet

Hbosons
eff = −4t2

U
~S1 · ~S2.

2. Relative number and relative phase eigenstates. Consider a collection of

N identical bosons, each of which can be in one of two orthonormal single-particle

states

a† |0〉 ,b† |0〉 .

Assume N is even.

I got this problem from Leggett’s book, Quantum Liquids, Appendix 2B.

(a) Construct a basis of this Hilbert space made of eigenstates |M〉 of the ‘rel-

ative number’ operator

M ≡ 1

2

(
a†a− b†b

)
.
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How many such states are there? What are the possible eigenvalues of M?

There are N + 1 such states, labelled by how many of the N particles we

put in the a orbital:

|M〉 = ANM
(
a†
)N/2+M (

b†
)N/2−M |0〉 , ANM =

1√
(N/2 +M)!(N/2−M)!

M = −N/2,−N/2 + 1 · · ·N/2 − 1, N/2 for N even and M = −N/2 −
1
2
,−N/2 + 1

2
, · · ·N/2− 1

2
for N odd.

(b) Now consider the ‘relative phase’ states

|ϕ, c, s〉 ≡ 1√
N !

(
ceiϕ/2a† + se−iϕ/2b†

)N |0〉 ,
where c2 + s2 = 1 and c, s > 0. Expand this state in the basis above. Where

is the peak of PM(ϕ, c, s), the probability of finding M when measuring M

in this state?

|ϕ, c, s〉 =
1

N !

N∑
M=0

(
N

M

)(
a†ceiϕ/2

)N/2+M (
b†se−iϕ/2

)N/2−M
(7)

= |CM |eiMϕ |M〉 , |CM | = cN/2+MsN/2−MANM . (8)

PM = |CM |2 = cN+2MsN−2M |ANM |2. Using Stirling, the maximum occurs

at

0 = ∂M
(
log |CM |2

)
' ∂M ((N + 2M) log c+ (N − 2M) log s

−(N/2−M) log(N/2−M)− (N/2 +M) log(N/2 +M))

= log
c2

s2

N/2−M
N/2 +M

(9)

which is solved by

M̄ = N
(
c2 − s2

)
.

(c) Show that

|M〉 = A

∫ 2π

0

dϕe−iMϕ |ϕ, c, s〉

and find the constant A.
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A

∫ 2π

0

d̄ϕe−iMϕ |ϕ, c, s〉 (10)

= A

∫ 2π

0

d̄ϕe−iMϕ
∑
M ′

|CM ′ |eiM ′ϕ |M ′〉 (11)

= A|CM | |M〉 (12)

so A = 1
|CM |

.

(d) [Bonus question] What is the ‘relative phase’ operator diagonalized by the

‘relative phase’ states? Consider

ϕ̂ ≡ −iarg

(
a†b√

(N/2−M)(N/2 + M + 1)

)

and show that it satisfies (approximately, at large N)

[M, ϕ̂] = −i.

(e) [Bonus question] What needs to be fixed above if N is odd?

(f) Now for the real physics content of the problem. Suppose we think our

system wants to macroscopically occupy the two orbitals associated with a

and b. We could do this in two different ways: a state of definite relative

number:

|F 〉 ≡
(
a†
)NA

(
b†
)NB |0〉 , NA +NB = N

or a state of definite relative phase:

|G〉 ≡
(
αa† + βb†

)N |0〉 .
Notice that the latter is a simple BEC in a particular linear combination of

the two orbitals. Based on a variational estimate, which of these states is

favored energetically by the interaction

Hint = U0b
†ba†a

if U0 > 0?

To do a variational calculation, first we have to normalize the states. Let

me redefine

|F 〉 ≡
(
a†
)NA

√
NA!

(
b†
)NB

√
NB!

|0〉 , NA +NB = N
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|G〉 ≡ 1√
N !

(
αa† + βb†

)N |0〉
so that they are normalized. The latter requires that |α|2 + |β|2 = 1, which

we can parametrize as α = ceiϕ/2, β = se−iϕ/2 as above.

|F 〉 is an eigenstate of Hint:

〈F |Hint|F | = U0NANB. (13)

To compute
〈
N̂AN̂B

〉
in the state |G〉, we could just use the calculation

above that says NA −NB = 2M = 2N(c2 − s2). But let’s do it exactly:〈
G|N̂A|G

〉
=

1

N !

∑
m1,m2

(
N

m1

)(
N

m2

)
αm1ᾱm2βN−m1 β̄N−m1 〈m2, N −m2| N̂A |m1, N −m1〉︸ ︷︷ ︸

=δm1,m2m1

=
∑
m

(
N

m

)
|α|2m|β|2(N−m)m (14)

= |α|2∂|α|2
∑
m

(
N

m

)
|α|2m|β|2(N−m) (15)

= |α|2∂|α|2(|α|2 + |β|2)N (16)

= |α|2N. (17)

Similarly,
〈
G|N̂B|G

〉
= |β|2N . So to compare F and G, we should set

|α|2 = c2 = NA/N, |β|2 = s2 = NB/N = 1 − |α2. The energy expectation

can be computed by the same method:

〈G|Hint|G〉 = U0

〈
G|N̂BN̂B|G

〉
(18)

= U0|α|2∂|α|2|β|2∂|β|2
(
|α|2 + |β|2

)N
(19)

= U0N(N − 1)|α|2|β|2 (20)

= U0
N − 1

N
NANB (21)

which is slightly smaller than (13) at finite N .

3. Mean field theory for the Bose-Hubbard model.

Consider again the Bose-Hubbard model

HBH =
∑
i

(
−µni +

U

2
ni(ni − 1)

)
+
∑
ij

b†iwijbj
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on a lattice with uniform coordination number z. The hopping matrix is wij ≡ w

if ij share a link, and zero otherwise.

We’ll consider a variational approach to mean field theory. We’ll find the best

product-state wavefunction |Ψvar〉 = ⊗i |ψi〉, and minimize the BH energy 〈Ψvar|HBH |Ψvar〉
over all ψi. We can parametrize the single-site states as the groundstates of the

mean-field hamiltonian:

HMF =
∑
i

hi =
∑
i

(
−µni +

U

2
ni(ni − 1)− ψ?bi − ψb†i

)
.

Here ψ is an effective field that incorporates the effects of the neighboring sites.

Notice that nonzero ψ breaks the U(1) boson number conservation: particles can

hop out of the site we are considering. This also means that nonzero ψ will signal

SSB.

What does this simple approximation give up? For one, it assumes the ground-

state preserves the lattice translation symmetry, which doesn’t always happen.

More painfully, it also gives up on any entanglement at all in the groundstate.

Phases for which entanglement plays an important role will not be found this

way.

We want to minimize over ψ the quantity

E0 ≡
1

M
〈Ψvar|HBH |Ψvar〉 =

1

M

〈Ψvar|

 HBH −HMF︸ ︷︷ ︸
=
∑
wb†b+ψ?b+h.c.

+HMF

 |Ψvar〉


=

1

M
EMF (ψ)+zw

〈
b†
〉
〈b〉+ 〈b〉ψ? +

〈
b†
〉
ψ. (22)

Here z is the coordination number of the lattice (the number of neighbors of a

site, which we assume is the same for every site), M is the number of sites, and

〈..〉 ≡ 〈Ψvar| .. |Ψvar〉.

(a) Make sure the previous discussion makes sense to you.

(b) First consider w = 0, no hopping. What is the optimal value of ψ? What is

the optimal single-site state as a function of µ/U?

Then ψ = 0 (neighbors don’t matter), and the single-site state is a number

eigenstate |ψi〉 = |n0(µ/U)〉, where n0(x) = 0 for x < 0, and n0(x) = dxe,
(the ceiling of x, i.e. , the next integer larger than x), for x > 0. Precisely
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when µ/U is an integer, there is a twofold degeneracy per site.

That is, the groundstate has n0 bosons when (n0 − 1)U < µ < nU .

(c) We can find the boundaries of the region where ψ = 0 (the Mott insulator

phase) by Taylor expanding E0 in powers of ψ, following Landau: E0 =

E0
0 + r|ψ|2 +O(|ψ|4).

Using second order perturbation theory (in the ψb†+ψ?b terms of the mean

field hamiltonian) or otherwise, derive the form of r as a function of µ/U .

The answer is

r = χ0(n0) (1− zwχ0(n0))

where

χ0(n0) ≡ n0 + 1

Un0 − µ
+

n0

µ− U(n0 − 1)
, (23)

and n0 is the integer which minimizes Un(n− 1)− µn.

So we need to approximate the groundstate of HMF . We can do this in

perturbation theory in ψ, that is, ∆H ≡ −ψb† − ψ?b:

|gs〉 ' |n0〉+
∑
n

|n〉 〈n|∆H |n0〉
E0(n)− E0(n0)

(24)

= |n0〉+
1

E+

|n0 + 1〉 〈n0 + 1|
(
−ψb†

)
|n0〉+

1

E−
|n0 − 1〉 〈n0 − 1| (−ψ?b) |n0〉

(25)

= |n0〉 − ψ
√
n0 + 1

E+

|n0 + 1〉 − ψ?
√
n0

E−
|n0 − 1〉 (26)

where

E± = E0(n0)− E0(n0 ± 1), E0(n0) ≡ −µn0 +
U

2
n0(n0 − 1)

This gives

E+ = µ− Un0, E− = −µ+ U(n0 − 1).

We used 〈n0|b |n0 + 1〉 =
√
n0 + 1.

To first order in ψ, then, this gives

〈b〉 = ψχ0,
〈
b†
〉

= ψ?χ0
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where χ0 is defined in (24). Also using perturbation theory in ψ, the ground-

state energy of HMF is then approximately

E0
MF ' E0(n0) +

∑
n

| 〈n|∆H |n0〉 |2

E0(n)− E0(n0)
= E0(n0)− ψψ?χ0.

The expectation value of the hamiltonian is then

E0 = E0(n0) + ψψ?χ0 + zwψψ?χ2
0 − ψχ0ψ

? − ψ?χ0ψ (27)

= E0(n0) + ψψ?
(
−χ0 + zwχ2

0 + χ0 + χ0

)
(28)

and hence

r = χ0(1− zwχ0).

(d) Draw the Mott lobes using this formula.

This figure is for z = 4, as for the square lattice.

Note that everywhere in each MI lobe, the expectation
〈
b†b

〉
takes exactly

the same value, and the same value, n0 as it does at w = 0. This is because

the Hamiltonian commutes with the total number operator N =
∑

i b
†
ibi,

and the state is uniform so 〈N〉 = M
〈
b†b

〉
. The groundstate at w = 0

is an eigenstate of N. Since there is an energy gap in the MI state, the

(quantized) eigenvalue of N cannot change. This means in particular that

∂µ 〈N〉 = 0, the MI state is incompressible.

4. Particle conservation and the f-sum rule. [Bonus problem] Consider a

collection of N particles (bosons or fermions) governed by a Hamiltonian of the
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form

H =
∑
i

p2
i

2m
+
∑
i<j

V (rij).

Recall that the operator

ρq =
∑
i

e−iq·ri

is the Fourier transform of the particle density ρ(r) =
∑

i δ
d(r − ri), where ri is

the position of the ith particle.

(a) Find

∂tρq = −i[ρq,H]

and show that it can be written in the form

[ρq,H] = ~q · ~Jq

where

~Jq =
1

2

∑
i

(
~pi
m
e−iq·ri + e−iq·ri

~pi
m

)
. (29)

Interpret this as a continuity equation.

The only ingredient we need is [qi,pj] = i~δij.

∂tρq = −i[ρq,H] = −i
∑
i

∑
j

[e−iq·ri ,
p2
j

2m
] (30)

= − i

2m
(−i) (i)

∑
i

~q ·
(
~pie
−iq·ri + e−iq·ri~pi

)
(31)

where we used [A,B2] = B[A,B] + [A,B]B. This is (30) (times −i). We

have

∂tρq + i~q · ~Jq

which, since ρq =
∫
ddreiq·rρ(r) is the fourier transform of the density oper-

ator ρ(r) =
∑

i δ
d(r− ri), is the fourier transform in space of the continuity

equation

∂tρ(r) + ~∇ · ~J(r) = 0

where

~J(r) =

∫
d̄dqe−iq·r~Jq =

1

2

∑
i

(
~pi
m
δd(r − ri) + δd(r− ri)

p̃i

m

)
.
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(b) For later use, compute [~Jq, ρ
†
q].

[~Jq, ρ
†
q] =

1

2

N∑
i,j

[

(
~pi
m
e−iq·ri + e−iq·ri

~pi
m

)
, e+iq·rj ] (32)

=
1

2
(−i~q)

∑
ij

(
1

m
e+iq·rje−iq·ri + e−iq·ri

1

m
e+iq·rj

)
(33)

= (−i)(+i)
~q

m

∑
i

=
~q

m
N. (34)

(c) Consider the object

〈Φ0| [[ρq,H], ρ†q] |Φ0〉

where Φ0 is the groundstate. Compute this by inserting a resolution of the

identity 1 =
∑

n |Φn〉〈Φn| in terms of energy eigenstates H |Φn〉 = (E0 +

ωn) |Φn〉 and show that it is equal to

〈Φ0| [[ρq,H], ρ†q] |Φ0〉 = 2

∫
dωS(q, ω)

where

S(q, ω) =
∑
n

δ(ω − ωn)| 〈Φn| ρq |Φ0〉 |2 (35)

is the dynamical structure factor.

For free we can replace H with H−E0, where E0 is the groundstate energy,

since [ρq, E0 = 0. Then there are only two nonzero terms:

〈Φ0| [[ρq,H], ρ†q] |Φ0〉 = 〈Φ0| [[ρq,H− E0], ρ†q] |Φ0〉 (36)

= 〈Φ0|
(
ρq(H− E0)ρ†q + ρ†q(H− E0)ρq

)
|Φ0〉 (37)

=
∑
n

〈Φ0| ρq |n〉 〈n| ρ†q |Φ0〉ωn + 〈Φ0| ρ†q |n〉 〈n| ρq |Φ0〉ωn

=
∑
n

ωn
(
| 〈n| ρ†q |Φ0〉 |2 + | 〈n| ρq |Φ0〉 |2

)
(38)

Now a slightly tricky step: because of time-reversal invariance, there is a

degeneracy between states with momentum ~q and −~q. Therefore for each ~q

we can find a state |n′〉 with the same ωn = En−E0 so that | 〈n| ρ†q |Φ0〉 |2 =

| 〈n′| ρq |Φ0〉 |2. Therefore this is

〈Φ0| [[ρq,H], ρ†q] |Φ0〉 = 2
∑
n

ωn| 〈n| ρq |Φ0〉 |2

which is manifestly what we get if we integrate (36) over ω.
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(d) Conclude (by combining the previous parts) that the f -sum rule∫
dωS(q, ω) =

N~2q2

2m
.

is true.

On the one hand, we have from the first two parts of the problem

[[ρq,H], ρ†q] = ~q · [~Jq,H] =
q2

m
N.

On the other hand, if we take its matrix element in the groundstate, we get

by the previous part

〈Φ0| [[ρq,H], ρ†q] |Φ0〉 = 2

∫
dωS(q, ω).

Therefore ∫
dωS(q, ω) =

Nq2

2m
.

Restoring factors of ~ by dimensional analysis gives the state f -sum rule.
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