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1. Antiferromagnet from fermions. In lecture, we discussed the idea of getting

a magnet from a Mott insulator, where the electrons are stuck in place by mutual

repulsion, but can still have a spin degree of freedom. In such a system, what

determines the interactions between the spins?

Consider the hamiltonian

H = −t
∑
σ

(
c†1σc2σ + h.c.

)
+ U (n1↑n1↓ + n2↑n2↓) ≡ Ht + HU

with t, U > 0. Here the cs are canonical fermion operators: {ciσ, c†jσ′} = δijδσσ′ ,

{ciσ, cjσ′} = 0. σ =↑, ↓ labels the electron spin and niσ ≡ c†iσciσ is the number

operator. This is the fermionic Hubbard model on just two sites, i = 1, 2.

In this problem we will think about the sector of states with exactly two electrons

i.e. we only consider states |ψ〉 with(∑
i,σ

niσ − 2

)
|ψ〉 = 0.

(a) First, enumerate all the states with two electrons (make sure to be careful

about defining their signs).

(b) Next, consider U/t = ∞. How many groundstates does the system have if

there are two electrons in total? Write down these ground states.

Now consider U/t � 1 (but not infinite). We will do degenerate perturbation

theory to find an effective Hamiltonian action on the degenerate groundspace, X.

(c) Show that at first order in t/U , the perturbing hamiltonian Ht always takes

us out of the degenerate subspace, X.

(d) Recall that at second order, the matrix elements of the effective Hamiltonian

take the form

〈a|Heff |b〉 = −
∑
n/∈X

〈a|Ht |n〉
1

〈n|HU |n〉
〈n|Ht |b〉

1



where |a〉 , |b〉 belong to the degenerate subspace X, and |n〉 does not. Show

that the effective Hamiltonian is (up to an additive constant)

Heff = J~S1 · ~S2

where ~Si ≡ 1
2
c†i~σci. Find the value of J in terms of t and U .

(e) Now redo the whole problem for hard-core bosons. (By hard-core, I mean

we forbid
(
b†i↑

)2

but allow b†i↑b
†
i↓.) Compare the answer.

2. Relative number and relative phase eigenstates. Consider a collection of

N identical bosons, each of which can be in one of two orthonormal single-particle

states

a† |0〉 ,b† |0〉 .

Assume N is even.

(a) Construct a basis of this Hilbert space made of eigenstates |M〉 of the ‘rel-

ative number’ operator

M ≡ 1

2

(
a†a− b†b

)
.

How many such states are there? What are the possible eigenvalues of M?

(b) Now consider the ‘relative phase’ states

|ϕ, c, s〉 ≡ 1√
N !

(
ceiϕ/2a† + se−iϕ/2b†

)N |0〉 ,
where c2 + s2 = 1 and c, s > 0. Expand this state in the basis above. Where

is the peak of PM(ϕ, c, s), the probability of finding M when measuring M

in this state?

(c) Show that

|M〉 = A

∫ 2π

0

dϕe−iMϕ |ϕ, c, s〉

and find the constant A.

(d) [Bonus question] What is the ‘relative phase’ operator diagonalized by the

‘relative phase’ states? Consider

ϕ̂ ≡ −iarg

(
a†b√

(N/2−M)(N/2 + M + 1)

)
and show that it satisfies (approximately, at large N)

[M, ϕ̂] = −i.
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(e) [Bonus question] What needs to be fixed above if N is odd?

(f) Now for the real physics content of the problem. Suppose we think our

system wants to macroscopically occupy the two orbitals associated with a

and b. We could do this in two different ways: a state of definite relative

number:

|F 〉 ≡
(
a†
)N
A

(
b†
)NB |0〉 , NA +NB = N

or a state of definite relative phase:

|G〉 ≡
(
αa† + βb†

)N |0〉 .
Notice that the latter is a simple BEC in a particular linear combination of

the two orbitals. Based on a variational estimate, which of these states is

favored energetically by the interaction

Hint = U0b
†ba†a

if U0 > 0?

3. Mean field theory for the Bose-Hubbard model.

Consider again the Bose-Hubbard model

HBH =
∑
i

(
−µni +

U

2
ni(ni − 1)

)
+
∑
ij

b†iwijbj

on a lattice with uniform coordination number z. The hopping matrix is wij ≡ w

if ij share a link, and zero otherwise.

We’ll consider a variational approach to mean field theory. We’ll find the best

product-state wavefunction |Ψvar〉 = ⊗i |ψi〉, and minimize the BH energy 〈Ψvar|HBH |Ψvar〉
over all ψi. We can parametrize the single-site states as the groundstates of the

mean-field hamiltonian:

HMF =
∑
i

hi =
∑
i

(
−µni +

U

2
ni(ni − 1)− ψ?bi − ψb†i

)
.

Here ψ is an effective field that incorporates the effects of the neighboring sites.

Notice that nonzero ψ breaks the U(1) boson number conservation: particles can

hop out of the site we are considering. This also means that nonzero ψ will signal

SSB.

What does this simple approximation give up? For one, it assumes the ground-

state preserves the lattice translation symmetry, which doesn’t always happen.

More painfully, it also gives up on any entanglement at all in the groundstate.
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Phases for which entanglement plays an important role will not be found this

way.

We want to minimize over ψ the quantity

E0 ≡
1

M
〈Ψvar|HBH |Ψvar〉 =

1

M

〈Ψvar|

 HBH −HMF︸ ︷︷ ︸
=
∑
wb†b+ψ?b+h.c.

+HMF

 |Ψvar〉


=

1

M
EMF (ψ)+zw

〈
b†
〉
〈b〉+ 〈b〉ψ? +

〈
b†
〉
ψ. (1)

Here z is the coordination number of the lattice (the number of neighbors of a

site, which we assume is the same for every site), M is the number of sites, and

〈..〉 ≡ 〈Ψvar| .. |Ψvar〉.

(a) Make sure the previous discussion makes sense to you.

(b) First consider w = 0, no hopping. What is the optimal value of ψ? What is

the optimal single-site state as a function of µ/U?

(c) We can find the boundaries of the region where ψ = 0 (the Mott insulator

phase) by Taylor expanding E0 in powers of ψ, following Landau: E0 =

E0
0 + r|ψ|2 +O(|ψ|4).

Using second order perturbation theory (in the ψb†+ψ?b terms of the mean

field hamiltonian) or otherwise, derive the form of r as a function of µ/U .

The answer is

r = χ0(n0) (1− zwχ0(n0))

where

χ0(n0) ≡ n0 + 1

Un0 − µ
+

n0

µ− U(n0 − 1)
, (2)

and n0 is the integer which minimizes Un(n− 1)− µn.

(d) Draw the Mott lobes using this formula.

4. Particle conservation and the f-sum rule. [Bonus problem] Consider a

collection of N particles (bosons or fermions) governed by a Hamiltonian of the

form

H =
∑
i

p2
i

2m
+
∑
i<j

V (rij).

Recall that the operator

ρq =
∑
i

e−iq·ri

is the Fourier transform of the particle density ρ(r) =
∑

i δ
d(r − ri), where ri is

the position of the ith particle.

4



(a) Find

∂tρq = −i[ρq,H]

and show that it can be written in the form

[ρq,H] = ~q · ~Jq

where

~Jq =
1

2

∑
i

(
~pi
m
e−iq·ri + e−iq·ri

~pi
m

)
. (3)

Interpret this as a continuity equation.

(b) For later use, compute [~Jq, ρ
†
q].

(c) Consider the object

〈Φ0| [[ρq,H], ρ†q] |Φ0〉

where Φ0 is the groundstate. Compute this by inserting a resolution of the

identity 1 =
∑

n |Φn〉〈Φn| in terms of energy eigenstates H |Φn〉 = (E0 +

ωn) |Φn〉 and show that it is equal to

〈Φ0| [[ρq,H], ρ†q] |Φ0〉 = 2

∫
dωS(q, ω)

where

S(q, ω) =
∑
n

δ(ω − ωn)| 〈Φn| ρq |Φ0〉 |2 (4)

is the dynamical structure factor.

(d) Conclude (by combining the previous parts) that the f -sum rule∫
dωS(q, ω) =

N~2q2

2m
.

is true.

5


