University of California at San Diego — Department of Physics — Prof. John McGreevy

Physics 212C QM Spring 2023
Assignment 10 (“Final Exam”)

Due 11:00am Wednesday, June 14, 2023

1. Antiferromagnet from fermions. In lecture, we discussed the idea of getting
a magnet from a Mott insulator, where the electrons are stuck in place by mutual
repulsion, but can still have a spin degree of freedom. In such a system, what
determines the interactions between the spins?

Consider the hamiltonian

H=—¢ Z (CJ{UCQU + hC) + U (annu + HQTHQ¢) = Ht + HU

with ¢,U > 0. Here the cs are canonical fermion operators: {c;,, c}a,} = 00507,

{Cis,cjor} = 0. o =T, labels the electron spin and n;, = ¢! c. is the number
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operator. This is the fermionic Hubbard model on just two sites, i = 1, 2.

In this problem we will think about the sector of states with exactly two electrons
i.e. we only consider states [1)) with

(Z n, — 2) 1) = 0.

(a) First, enumerate all the states with two electrons (make sure to be careful
about defining their signs).

(b) Next, consider U/t = co. How many groundstates does the system have if
there are two electrons in total? Write down these ground states.

Now consider U/t > 1 (but not infinite). We will do degenerate perturbation
theory to find an effective Hamiltonian action on the degenerate groundspace, X.

(¢) Show that at first order in ¢/U, the perturbing hamiltonian H, always takes
us out of the degenerate subspace, X.

(d) Recall that at second order, the matrix elements of the effective Hamiltonian
take the form

(a| Heg [b) = = > (al He |n)

ng¢X

T ; s (n H )
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(e)

where |a) , |b) belong to the degenerate subspace X, and |n) does not. Show
that the effective Hamiltonian is (up to an additive constant)

Hes=JS; - S,

where S; = %cj&ci . Find the value of J in terms of ¢ and U.

Now redo the whole problem for hard-core bosons. (By hard-core, I mean

2
we forbid (b;rT) but allow b;rTbL.) Compare the answer.

2. Relative number and relative phase eigenstates. Consider a collection of

N identical bosons, each of which can be in one of two orthonormal single-particle

states

a'[0),b'|0).

Assume N is even.

(a)

(d)

Construct a basis of this Hilbert space made of eigenstates |M) of the ‘rel-
ative number’ operator

1
M= 3 (aTa— bTb) :

How many such states are there? What are the possible eigenvalues of M?

Now consider the ‘relative phase’ states
1 . .
p,c,8) = Vo (ce'?al + Se_“P/QbT)N |0),

where ¢ + 5% =1 and ¢, s > 0. Expand this state in the basis above. Where
is the peak of Py(¢p, ¢, s), the probability of finding M when measuring M
in this state?

Show that
2T
M) =4 [ dpe e cs)
0
and find the constant A.

[Bonus question] What is the ‘relative phase’ operator diagonalized by the
‘relative phase’ states? Consider

.. a'b
v e (\/(N/2 —M)(N/2+ M + 1))

and show that it satisfies (approximately, at large N)
M, 9] = —i.
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(e) [Bonus question] What needs to be fixed above if N is odd?

(f) Now for the real physics content of the problem. Suppose we think our
system wants to macroscopically occupy the two orbitals associated with a
and b. We could do this in two different ways: a state of definite relative
number:

IF) = ()] ()" 10), Na+Ng=N

or a state of definite relative phase:
G) = (aal + b)Y |0) .

Notice that the latter is a simple BEC in a particular linear combination of
the two orbitals. Based on a variational estimate, which of these states is
favored energetically by the interaction

Hint = UobTbaTa
if Uy > 07

3. Mean field theory for the Bose-Hubbard model.
Consider again the Bose-Hubbard model

U
ij

%

on a lattice with uniform coordination number z. The hopping matrix is w;; = w
if 25 share a link, and zero otherwise.

We’ll consider a variational approach to mean field theory. We’ll find the best
product-state wavefunction |¥,,,) = ®; [1;), and minimize the BH energy (V. ..| Hgy |V yar)
over all ¥;. We can parametrize the single-site states as the groundstates of the
mean-field hamiltonian:

Hyr = Zhi = Z (—an’ + Enz(nz —1) —b; — @Zibi) -
Here 1) is an effective field that incorporates the effects of the neighboring sites.

Notice that nonzero ¢ breaks the U(1) boson number conservation: particles can

hop out of the site we are considering. This also means that nonzero ¢ will signal
SSB.

What does this simple approximation give up? For one, it assumes the ground-
state preserves the lattice translation symmetry, which doesn’t always happen.
More painfully, it also gives up on any entanglement at all in the groundstate.
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Phases for which entanglement plays an important role will not be found this
way.

We want to minimize over ¢ the quantity

1 1
& = M <\Ijvar| Hpy |\IJvar> - M <\I[Var| Hpn — HMF, +Hyr |\Ij"ar>
=" wbltb41p*b4-h.c.
1
= a7 Bar()+2w (1) () + (0) 0™ + (1) ¢ (1)

Here z is the coordination number of the lattice (the number of neighbors of a
site, which we assume is the same for every site), M is the number of sites, and

<> = <\Pvar’ . |\I/var>-

(a) Make sure the previous discussion makes sense to you.

(b) First consider w = 0, no hopping. What is the optimal value of ¢)? What is
the optimal single-site state as a function of p/U?

(¢) We can find the boundaries of the region where ¢ = 0 (the Mott insulator
phase) by Taylor expanding & in powers of 1, following Landau: & =
& + 1Y+ O([Y[").
Using second order perturbation theory (in the 1b! +1*b terms of the mean
field hamiltonian) or otherwise, derive the form of r as a function of p/U.
The answer is
r = Xo(no) (1 — zwxo(no))

where
ng + 1 no

+ ;
Ung—p p—U(ng—1)

and ng is the integer which minimizes Un(n — 1) — un.

Xo(no) =

(d) Draw the Mott lobes using this formula.

4. Particle conservation and the f-sum rule. [Bonus problem| Consider a
collection of N particles (bosons or fermions) governed by a Hamiltonian of the

2

1<J

form

Recall that the operator

Pq = Z C

is the Fourier transform of the particle density p(r) = >, 6%(r — r;), where r; is
the position of the ith particle.



(a)

Find
atpq = _i[PQa H]
and show that it can be written in the form

-

[pq7 H] = (T Jq

where X B )
J — Pi_—igr; —igr; Pi

Interpret this as a continuity equation.
For later use, compute [J, pil.

Consider the object
(@0l [[pg, HJ, o] |®0)

where @ is the groundstate. Compute this by inserting a resolution of the
identity 1 = > |®,)X®,| in terms of energy ecigenstates H|®,) = (Ey +
wy) |®,) and show that it is equal to

(@0l [[p H. p1] | B) = 2 / 105 (q, )

where
S(g,w) = Y 8w = wa)| (Pl pg |B0) | (4)
is the dynamical structure factor.

Conclude (by combining the previous parts) that the f-sum rule

2 2
/de(q,w) _ Mg :

2m

1s true.



