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0.1 Introductory remarks and goals

The study of phases of matter is a topology problem. Let me explain. We wish to

divide the set

{macroscopic piles of stuff, with some interactions}

into equivalence classes. The equivalence relation is roughly: two interacting piles of

stuff are regarded as being in same phase if their observable properties are adiabatically

connected under varying the interactions and adding in more non-interacting, gapped

stuff. So phases of matter are essentially elements of π0(piles of stuff). 1

A topological invariant is a quantity that does not change under such continuous

variations, for example a quantity that is guaranteed to be an integer. Such invariants

are wonderful because they provide labels on our equivalence classes. The simplest

example of a topological invariant labelling a phase of matter is the (integer!) number

of groundstates of an Ising magnet: it is 2 in the ordered phase, and 1 in the disordered

phase; thus these two phases must be distinct. So you see that the use of topology in

condensed matter physics is not just for ‘topological phases’.

Topological phases are those that are distinguished from others, say from the trivial

state, by properties other than ordinary symmetry breaking. (A good representative

of the trivial state is an atomic insulator, where each particle is 600 miles from its

nearest neighbor and never even says ‘hello’. More generally, the trivial phase is one

that has a product state representative that breaks no symmetries.) By now there is

a large variety of known ways in which phases can be topological, some of which are

pretty fancy mathematically. Some of them have even been found in Earth rocks. My

main goal in this course will be to try to explain some of these phenomena, and the

topologically-invariant labels we can attach to them, as concretely as possible.

To do this, it will occasionally be necessary to use some mathematics. A few years

ago, I taught a course whose purpose was to develop some tools of algebraic topology,

at least some such tools that are realized in toy models of physical systems. I will

not assume this background. I am going to do my best to make our discussion here

self-contained, while not making this a math course. At times I may have to ask you to

do some extra background reading or to take some statements on faith. As a hopefully-

useful resource, I’ve posted a summary of the mathematical highlights; I don’t expect

you to absorb every detail of this, but rather to use it as a resource as needed.

Likely, not everyone taking this class took the previous two quarters of the con-

densed matter series. If it seems like I am assuming some knowledge you don’t have,

please do not hesitate to ask.

1πq of this space for q > 0 is also interesting but much less well-explored so far.

3

https://mcgreevy.physics.ucsd.edu/w21
https://mcgreevy.physics.ucsd.edu/s24/2024-230-supplement-on-algebraic-topology.pdf
https://www.youtube.com/watch?v=wtaC0tqXZMU


For a list of topics we might cover, see the table of contents of this document, or

this administrative handout. There is a lot one could say on this subject and we will

have to make some selections. Your input is encouraged.

0.2 Conventions

For some of us, eyesight is a valuable and dwindling commodity. In order not to waste

it, I will often denote the Pauli spin operators by

X ≡
(

0 1

1 0

)
Y ≡

(
0 −i

i 0

)
Z ≡

(
1 0

0 −1

)
(rather than σx,y,z, which hides the important information in the superscript) in the Z

basis. I’ll write |0〉, |1〉 for the Z eigenstates, Z |0〉 = |0〉 and Z |1〉 = − |1〉 and |±〉 for

the states with X |±〉 = ± |±〉.

I use ijk for spatial indices, µνρ for spacetime indices. d is the number of space

dimensions and D = d+ 1 is the number of spacetime dimensions (it’s bigger).

≡ means ‘equals by definition’. A
!

= B means we are demanding that A = B.

A
?
= B means A probably doesn’t equal B.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ(q) ≡ (2π)dδd(q).

I try to be consistent about writing Fourier transforms as∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

WLOG ≡ without loss of generality.

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

iid ≡ independent and identically distributed.

We work in units where ~ and kB are equal to one unless otherwise noted.
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Please tell me if you find typos or errors or violations of the rules above.
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0.3 Anticipated Sources

This list will grow with the notes.

N. Mermin, The Topological Theory of Defects in Ordered Media. The classic account

of the use of homotopy theory to understand excitations of ordered media that,

because of topology, cannot disappear.

G. Volovik, Exotic properties of superfluid 3He. A nice discussion of the Landau-

Ginzburg theory of this remarkable system.

R. Moessner, J. Moore, Topological Phases of Matter, Cambridge, 2021. I just got a

copy of this book and it seems to have some nice things in it, with some overlap

with our goals.

S. Girvin, K. Yang, Modern condensed matter physics, Cambridge, 2019.

M. Nakahara, Geometry, Topology and Physics. I was not a big fan of this book when

I was a student because I thought it was superficial. Looking at it again now, I

see its virtues more clearly. It has useful things in it and it is mostly written for

physicists.

Nash and Sen, Geometry and Topology for Physicists. This book has the virtue of

brevity.

D. Tong, Lectures on the Quantum Hall Effect.

D. Arovas, Lecture Notes on Quantum Hall Effect (A Work in Progress)

X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford, 2004.

X.-G. Wen, Topological orders and Edge excitations in FQH states.

A. Zee, Quantum Hall Fluids.

G. Moore, Quantum Symmetries and Compatible Hamiltonians.

G. Moore, Introduction to Chern-Simons Theories.

J. Harvey, Lectures on Anomalies.

E. Witten, Three Lectures On Topological Phases Of Matter.

E. Witten, Fermion Path Integrals And Topological Phases.
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A. Turner and A. Vishwanath, Beyond Band Insulators: Topology of Semi-metals and

Interacting Phases.

T. Senthil, Symmetry Protected Topological phases of Quantum Matter.

C. Z. Xiong, Classification and Construction of Topological Phases of Quantum Mat-

ter.

1 Introductory remarks about quantum matter

This is an introductory section on basic notions of quantum phases of matter, and how

to think about them in terms of entanglement. For further reading, I suggest:

• Zeng, Chen, Zhou, Wen, Quantum Information Meets Quantum Matter: From

Quantum Entanglement to Topological Phase in Many-Body Systems

• These TASI lectures.

• For more on applications of quantum information theory to many body physics

from a similar viewpoint, see the lecture notes and problems posted here.

1.1 States of matter, classified by level of desperation

In this class we are going to talk about exten-

sive quantum systems. A quantum system can be

specified by its Hilbert space and its Hamiltonian.

By the adjective extensive I mean that the Hilbert

space is defined by associating finite-dimensional

Hilbert spaces Hx to chunks of space, labelled by

some coordinates x. Then couple them by a local

Hamiltonian, H =
∑

xHx, where Hx acts only on

the patch at x and not-too-distant patches (and as

the identity operator on the other tensor factors in

H).

2

The phenomena whose study we will find most fulfilling only happen in the ther-

modynamic limit, where the number of patches grows without bound. I will use L to

2We can allow the local Hilbert space to be infinite-dimensional (as for rotors or bosons) if we add

terms to the Hamiltonian that leave a finite-dimensional set of low-energy states. In practice, when

simulating such systems for example, we can always truncate the Hilbert space to some finite value.
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denote the linear size of the system. For a cubic chunk of d-dimensional hypercubic

lattice, there are
(
L
a

)d
patches, where a is the size of the patches. So the thermody-

namic limit is L → ∞, or more precisely L � a. In the mysterious first sentence of

this paragraph, I am referring to emergent phenomena: qualitatively new effects which

can never be accomplished by small systems, such as spontaneous symmetry breaking

(magnetism, superconductivity, the rigidity of solids), phase transitions, topological

order, and all the other things we have not thought of yet because we are not very

smart.3 4

Perhaps the most basic question we can ask about such a system is: how many

degrees of freedom are there at the lowest energies (lower than any interesting scale

in the problem, in particular in the Hamiltonian)? By degrees of freedom (dofs) I

mean excitations that can be created by a local operator, as in an experiment where

we scatter particles (neutrons, photons...) off the material. There are essentially three

possibilities:

1. None.

2. Some.

3. A lot.

As we proceed down this classification, our level of understanding rapidly decreases.

A more informative tour through that list goes like this. To get started let me make

the assumption that the system has (at least discrete) translation invariance, so we can

label the excitations by momentum.

1. None: Such a system has an energy gap (‘is gapped’): the energy difference

∆ = E1 − E0 between the first excited state and the groundstate is nonzero,

even in the thermodynamic limit. Note that ∆ is almost always nonzero in finite

volume. (Recall, for example, the spectrum of the electromagnetic field in a box

3In case you doubt that characterization, ask yourself this: How many of the items on this list were

discovered theoretically before they were found to occur in Earth rocks by our friends who engage in

experiments? The answer is none. Not one of them! Let us be humble. On the other hand: this is

a source of hope for more interesting physics, in that the set of Earth rocks which have been studied

carefully so far is likely to represent a very small sample of the possible emergent quantum systems.
4Can you think of other elements I should add to this list? One possibility (thanks to Ibou Bah for

reminding me) can be called gravitational order – the emergence of dynamical space (or spacetime)

(and hence gravity) from such ordinary-seeming quantum systems. The best-understood example of

this is AdS/CFT, and was discovered using string theory. I was tempted to claim this as a victory for

theorists, but then I remembered that we discovered gravity experimentally quite a while ago.
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of linear size L: En ∼ n
L

.) The crucial thing here (in contrast to the case of

photons) is that this energy stays finite even as L→∞.

The excitations of such a system are generally massive particles5.

Actually, it is useful to allow a finite number of states below the gap (which are

split by something of order e−αL and therefore rapidly become degenerate in the

thermodynamic limit) in our definition of a gapped system.

2. Some: An example of what I mean by ‘some’ is that the system can have exci-

tations which are massless particles, like the photon.

The lowest energy degrees of freedom occur at isolated points in momentum

space: The dispersion relation of the photon ω(k) = c
√
~k · ~k vanishes at ~k = 0.

In this category I also put the gapless fluctuations at a critical point. It’s not nec-

essarily true that ω ∼ kinteger and those excitations are not necessarily particles.

But they are still at k = 06.

3. A lot: What I mean by this is things like Fermi surfaces, where there are ex-

citations on a whole codimension-one locus in momentum space. This includes

not just free fermions or adiabatic continuations of free fermions (Landau Fermi

liquid theory). Such systems exist, for example in the half-filled Landau level

and in the strange metal regime of cuprate superconductors.

Let’s reconsider the case of gapped systems and define

the notion of a quantum phase. Different gapped states

are in different phases if we can’t deform the Hamiltonian

to get from one to the other without closing the gap. So

a gapped phase is an equivalence class of Hamiltonians.

In the figure at right, [A] = [A′] 6= [B].

A

wall of gap-closing

A′

B
space of H

5Verstraete et al proves a version of this statement. I think it is worth looking for loopholes here.
6or some other isolated points in momentum space.
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78You might be bothered by the following: it is hard to imagine checking that

there is no way around the wall of gaplessness. It is therefore important to find sharp

characterizations of such states, like integer labels, which cannot change smoothly.

This is the very definition of topology. An important goal in condensed matter physics

is to figure out labels that can be put on states which can distinguish them in this way

as distinct phases of matter.

Here are two classes of examples (even in the absence of symmetry) of topological

labels. These are the two main ways in which a state of matter can be topological:

protected edge states and topological order. Fractional quantum Hall systems exhibit

both of these phenomena, while integer quantum Hall states only exhibit the former.

1) Edge modes. There exist nontrivial topological phases without topological

order. Another (distinct!) possibility is that even if the system in infinite space has an

energy gap, if we cut the space open, new stuff can happen; for example there may be

gapless edge modes. There is a class of topological states which are characterized by

their edge modes, generally called invertible states (special cases include Symmetry-

Protected Topological states (SPTs) and Topological Insulators). The edge modes of

such a state must carry some property which cannot be recreated locally on the surface;

such a property is called an anomaly9.

7Actually, there is an important extra equivalence relation that we must include: We don’t care

if on top of some nontrivial phase of matter someone sprinkles a dust of decoupled qubits which are

totally inert and do nothing at all. This modification represents the same phase of matter. (A good

example to keep in mind is the K-shell electrons that sit passively next to the nucleus while the

conduction electrons do the hard work of forming some strongly-correlated phase.) Then, further,

we are allowed to adiabatically deform the hamiltonian, including these decoupled bits, so that they

can interact with the original degrees of freedom. So: in addition to allowing adiabatic variation of

couplings, we also allow the addition of decoupled qubits.
8Note that the closing of the gap does not by itself mean a quantum critical point: at a first order

transition, just the lowest two levels cross each other.
9This definition of SPT as a state characterized by its anomalous edge modes may be imperfect.

There are examples of distinct states protected by lattice symmetries which seem not to have inter-

esting edge modes. See appendix A of this paper or this paper. Thanks to Mike Hermele for bringing

this phenomenon to my attention. A related exception would seem to be “higher-order topological

insulators,” which have no edge states, but have excitations localized to sharp corners of the boundary.
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A reason to think that an interface between the vacuum and a gapped

state of matter which is distinct from the trivial one might carry

gapless modes is that the couplings in the hamiltonian are forced

to pass through the wall where the gap closes. In fact there are

important exceptions to this conclusion. For example, the toric code

admits gapped boundaries (interface with vacuum).

We’ll come back to the possibility of distinguishing phases of matter

by their edge states in §4.

2) Topological Order. Even the lowest-energy (even below the gap) physics of

gapped systems can be deeply fascinating. For example, it may be that the number of

groundstates depends on the topology of the space on which we put the system. Since

this is an integer, it cannot vary continuously and can only jump when the gap closes.

This is a symptom of the phenomenon is called topological order10.

As an example of a state with topological order, consider the toric code, aka Z2

gauge theory. A representative groundstate wavefunction (the fixed point one) locally

has the form

|gs, 0〉 =
∑

closed loops,C

|C〉 = · · · .

Here it is useful to think of the degrees of freedom as qubits living on the links of a

lattice; a basis of the Hilbert space of each link is labelled ‘yes string’ or ‘no string’,

and accordingly we do or do not draw a little red line segment over the link. The

(local) Hamiltonian picks out only configurations where these links form closed loops,

and picks out a uniform superposition of such loops. (We can talk about a specific

form of such a Hamiltonian later.)

I say ‘locally’ because on a space with non-contractable loops (like a cylinder), we

get orthogonal groundstates by including (or not) the loops that wind around the non-

contractible cycles. In the picture above, I tried to indicate that space is a cylinder,

10In order for this degeneracy to be stable, it must be that no local operator maps one of

these groundstates to another. Suppose our hamiltonian H0 happens to annihilate two states

|ψ1,2〉 (i.e. WLOG, set the groundstate energy to zero). If we perturb H with any ∆H such that

〈ψ1|∆H |ψ2〉, the degeneracy will be split – the levels repel each other.

This property makes the groundstate subspace of a system with topological order into a quantum

error-correcting code, with a code distance (the number of errors that can be corrected) of order the

system size L.
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and I included only contractable loops in the sum. An orthogonal groundstate is

|gs, 1〉 = · · · .

So the number of groundstates depends on the topology of space. States in these

different sectors are only related by an operator that creates a whole large loop winding

around the nontrivial cycle, hence not by any local operator:

|gs, 1〉 = O
( )

|gs, 0〉

The anyonic excitations arise by allowing the loops to end,

|anyons at x and y〉 = O
( )

|gs〉

(where we can act on any of the groundstates). Such a state can arise as the groundstate

of a spin system – it is a (gapped) spin liquid state.11

The low-energy physics of gapped phases is often described by a (unitary) topologi-

cal field theory; this is a theory of groundstates, and it can provide a way to distinguish

states of matter. When this is case, the phase is called a liquid. Exceptions include

fracton topological phases, where the lattice is not forgotten by the topological ground-

states.

So topological order means a robust spacetime-topology-dependent groundstate de-

generacy. Associated with this phenomenon is also a fractionalization of the quantum

numbers of the microscopic constituents. That is, the emergent quasiparticle exci-

tations carry quantum numbers (statistics, spin, charge) which are rational fractions

of those of the constituents. Particles of fractional spin are called anyons. In three

space dimensions, there are also string excitations with robust and interesting frac-

tional properties. In the example of the toric code above, although the microscopic

degrees of freedom are all bosonic (just spins), there is an excitation that is a fermion,

11To see that topological order is a subtle thing that one might miss if asking the wrong questions,

consider the following model of spins at the sites of the square lattice: H =
∑
iXi, where Xi is the

Pauli σx operator.

Its groundstate, written in the σz eigenbasis, is (the product state) ⊗i |→〉i ∝∏
i

∑
si=↑,↓ |{si}〉. We can also visualize this as a sum over closed loops: draw

a loop around each region of si =↓ (the red dots in the figure at right). They

are closed loops because they are the boundaries of a region. Isn’t this a toric

code groundstate? No! One way to see the difference is that since these loops

are defined as the boundaries of regions, they are always contractable.
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and there are excitations that are mutual semions, meaning that they get a minus sign

when braided around each other.

These two symptoms of topological order are not independent. A better way to

define anyons (or more generally topological excitations) is: localized excitations that

cannot be created by any local operator. But then these extended operators that create

the anyons can do other things, too. That is, the fractional statistics of the quasipar-

ticles implies a groundstate degeneracy on e.g. the torus: Pair-create a quasiparticle-

antiquasiparticle pair, move them around a spatial cycle, and then re-annihilate them.

This process is accomplished by an operator Fx maps one groundstate to another. But

Fx does not commute with some Fy (an analogous operator around the other direc-

tion), by the anyonic statistics. The space of groundstates must represent the algebra

of these operators. Conversely, a robust groundstate degeneracy requires that the dif-

ferent groundstates are related by the action of non-local operators. In cases where

the groundstate degeneracy is independent of geometry12, these non-local operators

describe the transport of fractionalized excitations around the cycles of the space.

[End of Lecture 1]

1.2 Toric code

Here’s the toric code. It emerges Z2 gauge theory from a local Hilbert space. There is

a sense in which it exists in certain forms of artificial condensed matter (cold atoms in

optical lattices, trapped ions).

12In contrast, in type-2 fracton models, the operators taking one topological groundstate to another

are supported on fractals, and so are hard to interpret as transporting anyons. In such models the

groundstate degeneracy depends (in a complicated way) on the system size, and not just on the

topology.
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Consider a 2d cell complex. This means a graph (a set of vertices who

know with whom they share an edge) with further information about

plaquettes, who know which edges bound them):

plaquettes
∂→ edges

∂→ vertices (1.1)

where ∂ is the boundary map, and I really mean formal linear com-

binations of these objects (we’ll see a natural quantum mechanical

realization of these linear combinations). For example, consider the

square lattice at right. Now place a qubit on each edge. Now let’s

make the terms in the Hamiltonian. Associate to each plaquette a

plaquette operator or ‘flux operator’, Bp =
∏

`∈∂p Z`, and to each ver-

tex a star operator or ‘gauss law operator’, Av =
∏

`∈∂−1vX`. (The

former names just describe the support of the operators on the graph.

The latter names are natural if we consider Z to be related to a gauge

field by Z ∼ eiA, and X is its electric flux. For more on the transla-

tion to gauge theory see §5.2 here.) These definitions are not special

to the square lattice and work for any cell complex, in any dimension.

[Fig by D.Ben-Zion, after

Kitaev]

The hamiltonian is HTC = −Γm
∑

pBp−Γe
∑

v Av. These terms all commute with

each other (since each vertex and plaquette share zero or two links), and they each

square to one, so the Hamiltonian is easy to diagonalize. Let’s find the groundstate(s).

Which states satisfy the ‘gauss law condition’ Av =

1? In the X basis there is an extremely useful vi-

sualization: we say a link l of Γ̂ is covered with a

segment of string (an electric flux line) if el = 1 (so

Xl = −1) and is not covered if el = 0 (so Xl = +1):

≡ X = −1. In the figure at right, we enumer-

ate the possibilities for a 4-valent vertex. Av = −1

if a flux line ends at v.

So the subspace of H satisfying the gauss law condition is spanned by closed-string

states (lines of electric flux which have no charge to end on), of the form
∑
{C}Ψ(C) |C〉.

Now we look at the action of Bp on this subspace of states:
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Bp =
∏

`∈∂p Z` creates and destroys strings around the

boundary of the plaquette p:

Bp |C〉 = |C + ∂p〉 .

The argument of the ket is to be understood mod two.

The condition thatBp |gs〉 = |gs〉 is a homological equiv-

alence. In words, the eigenvalue equation B2 = 1 says

Ψ(C) = Ψ(C ′) if C ′ and C can be continuously de-

formed into each other by attaching or removing pla-

quettes.

If the space is simply connected (like a sphere) – if all curves are the boundary of

some region contained in the lattice – then this means the groundstate

|gs〉 =
∑
C

|C〉 (1.2)

is a uniform superposition of all loops.

Topological order. If the space has non-contractible loops, however, then the

eigenvalue equation does not determine the relative coefficients of loops of different

topology! The two-dimensional torus obtained by considering periodic boundary con-

ditions in x and y is an example of such a space:

(1.3)

On a space with 2g independent non-contractible loops, there are 22g independent

groundstates. (In fact, the above is the very definition of the simplicial homology of

the space, with Z2 coefficients; more generally the number of independent groundstates

is 2b1 where b1 ≡ dimH1(M,Z2). For more on the connection with homology and

algebraic topology in general, see these notes.)

No local operator mixes these groundstates. This makes the topological degeneracy

stable to local perturbations of the Hamiltonian. The degenerate groundstates are

instead connected by the action of (Wegner-Wilson) loop operators:

WC =
∏
`∈C

Z` VČ =
∏
`⊥Č

X` .

The second object is supported on a loop Č that lives in the dual lattice. In 2d, this

is the lattice whose vertices are faces of the original lattice and vice versa. For the
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square lattice this is another square lattice shifted by half a lattice spacing in each

direction. (Notice that the loop operator for a single plaquette W∂2 = Bp is the

plaquette operator.) V,W commute with HTC and don’t commute with each other

(specifically WC anticommutes with VČ if C and Č intersect an odd number of times).

This algebra must be represented on the groundstates, and it doesn’t have any one-

dimensional representations. In terms of our picture of strings, WC creates a loop on

C, and VČ detects a loop intersecting Č.

The deconfined phase. So far everything I’ve said works on any graph (actually:

cell complex, since we need to know where the plaquettes are). And so far I’ve described

the solvable limit, where H = HTC.

But the fact that the code distance goes like L (no local operator mixes the topolog-

ical groundstates) is also the reason that the topological degeneracy is robust: adding

local operators to the Hamiltonian will never split the degeneracy in perturbation the-

ory. Therefore, this physics is characteristic of a phase of matter, and not just the

special solvable Hamiltonian HTC. The toric code is a (special, RG fixed point, with

zero correlation-length) representative of a phase of matter.

Perturbations such as ∆H =
∑

l (hXXl + hZZl) produce a

nonzero correlation length. Let’s focus on D = 2 + 1 for

what follows. These couplings hX and hZ are respectively

a string tension and a fugacity for the electric flux string

endpoints: charges. Make these too big and the model

is higgsed or confined, respectively. These fancy-sounding

phenomena are actually adiabatically connected [Fradkin-

Shenker]: Both are connected to the trivial state where e.g.

H =
∑

lXl whose groundstate is a product ⊗l |→l〉. [from Tupitsyn-Kitaev-Prokof’ev-Stamp]

The lower left corner is the

toric code. The region on

the lower left is the phase

with topological order. Ev-

erything else is adiabati-

cally connected to a prod-

uct state.

Anyons. There are two kinds of elementary excited states of the toric code: vio-

lations of As = 1 and violations of Bp = 1. 13

13Cultural note: The limit where the coefficient of the star term As goes to infinity is called ‘pure

Z2 gauge theory’, where the condition As = 1, the Gauss’ law constraint, is imposed exactly. The e

particle defects cost infinite energy and hence are strictly forbidden in this theory.
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Here is how to make them. The defects are created by the

endpoints of open Wilson lines. Again there are two kinds:

W (C) =
∏
`∈C

Z`, V (Č) =
∏
`⊥Č

X`. (1.4)

Here C is an open curve in the lattice, and Č is an open

curve in the dual lattice. Endpoints of W (C) violate As and

endpoints of V (Č) violate Bp.

These two kinds of particles have nontrivial mutual statis-

tics, as you can see by moving one of them around the other

and keep track of the strings trailing away from them. The

process results in a net factor of (−1) on the state.

This has the further consequence that their bound state is a

fermion, despite the fact that the model is entirely made from

local, bosonic degrees of freedom. Hence, fractionalization.

To see this, observe that exchanging two particles can be

accomplished by first rotating one around the other by a π

rotation, and then translating both of them by their sepa-

ration. As you can see in the figure, the first step requires

the string creating the e particle to cross that creating the

m particle on an odd number of links. (The second step is

innocuous.)

Consider the cylinder. There is one nontrivial class of loops;

call a representative γ. Let η be a line running along the

cylinder. The two groundstates are generated by the action

of the Wilson loop operator

V (η) ≡
∏

` crossed by η

X`

in the sense that

|gs2〉 = V (η) |gs1〉 .

This is also a groundstate (at hX , hZ = 0) since there is no plaquette with Bp = −1

(more simply: [HhX=hZ=0, Vx(η)] = 0). They are distinguished by W (γ) ≡
∏

l∈γ Xl

in the sense that the two groundstates are eigenstates of this operator with distinct

eigenvalues:

W (γ) |gsα〉 = (−1)α |gsα〉 , α = 1, 2.

This follows since W (η)V (γ) = −V (γ)W (η) – the two curves share a single link (the
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one pointed to by the yellow arrow in the figure).

At finite hX , hZ (and in finite volume), there is tunneling between the topologically

degenerate groundstates, since in that case

[H,
∏
l∈γ

Xl] 6= 0.

This means that for some n

〈gs2|Hn |gs1〉 6= 0.

The process that mixes the groundstates requires the creation of magnetic flux on some

plaquette (i.e. a plaquette P with BP = −1, which costs energy 2Γm), which then must

hop (using the hX term in H) all the way along the path η, of length L, to cancel the

action of V (η). The amplitude for this process goes like

Γ ∼ 〈gs2| (hX1) (hX2) · · · (hXL) |gs1〉
2Γm · 2Γm · . . . 2Γm

∼
(

h

2Γm

)L
= e−L| ln 2Γm/h|

which is extremely tiny in the thermodynamic limit. The way to think about this is that

the Hamiltonian is itself a local operator, and cannot distinguish the groundstates from

each other. It takes a non-perturbative process, exponentially suppressed in system

size, to create the splitting.

• I’ve focussed on the case of two spatial dimensions, but the toric code is well-

defined on an arbitrary cell complex, in particular on a lattice in any number of

dimensions. It has various generalizations:

• For example instead of the putting the dofs on the links, we can put them on the

p-cells. Instead of using qubits, we can use ZN clock and shift variables.

• The version on the p-cells with ZN variables computes Hp(C,ZN), the pth ho-

mology of the cell complex, as its groundstate subspace.

• With the dofs on the links, the model can be generalized to any finite group G

(in fact this step was already taken in Kitaev’s original paper). This is usually

called the quantum double model.

• I haven’t emphasized the connection to gauge theory above. The toric code is (a

limit of) G lattice gauge theory with the gauss law condition imposed energeti-

cally, meaning that the low energy states satisfy the gauss law condition. At low

energies it is governed by the TQFT described by Greg Moore and Meng Cheng

in their lectures.
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• By attaching various phases to the plaquette operators, we can make twisted

gauge theory, as introduced by Dijkgraaf and Witten. A better framework for

making explicit solvable lattice models for such states is the string net models

developed by Levin and Wen here (see here for more).

[End of Lecture 2]

The toric code.

To summarize, the energy eigenstates of the toric code look like:

The groundstates on the torus can be labelled as:∣∣∣∣ 〉
,

∣∣∣∣ 〉
,

∣∣∣∣ 〉
,

∣∣∣∣ 〉
'
∣∣∣∣ 〉

These groundstates are locally indistinguishable:〈 ∣∣∣∣Ox ∣∣∣∣ 〉
= 0 ∀ local operators Ox.

1.3 Back to the big overview

A word about the virtues of model Hamiltonians. In the previous subsection, we spent

some time talking about a particular special Hamiltonian. It is pretty artificial-looking,

in the sense that the terms in the Hamiltonian involve four or more spins at a time,

and in that all the terms commute with each other, a very non-generic situation. Why

do we think we can learn universal lessons from such a special system? The answer

comes from the renormalization group.
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Each gapped phase contains a single special point which is

an attractive fixed point of the renormalization group, with

zero correlation length. The fact that there can only be one

such point in each gapped phase can be proved by contradic-

tion: if we suppose there were more than one, we would not

be able to draw the flow lines without discovering a repulsive

fixed point separating them, but such a point must lie on the

wall of gap-closing. So every gapped phase contains a special

representative with zero correlation length. This special rep-

resentative is easier to understand because all the irrelevant

microscopic details have already been coarse-grained away.

So we might as well use it to learn about the phase.

A third essential symptom of topological order is long-range entanglement in the

groundstate wavefunction. I claim that the groundstate of a system with topological

order cannot be made from a product state by a finite-depth local unitary circuit. I

will explain this point in §1.4. Actually the converse of this is not true: there are some

exceptional states with this property but which nevertheless do not have topological

order, namely integer quantum Hall states and a few other examples we’ll discuss

below. A sharper diagnostic is the topological entanglement entropy, defined in terms

of the entanglement entropy of a subsystem, which vanishes if and only if there are no

anyons. This means that a state with topological order is (in a certain sense) far from

a product state.

Let’s enshrine these symptoms of topological order in a list:

1. Fractionalization of quantum numbers.

2. Groundstate degeneracy that depends on the topology of space.

3. Long-ranged entanglement.

I emphasize that the quantum numbers of the anyons (their statistics and (if there

are global symmetries) charges) characterize the phase of matter. Especially in D =

2 + 1, the theory of anyons (their statistics and fusion rules) is a highly-developed

mathematical edifice called topological field theory (TQFT), and more specifically in

the case of 2+1 dimensions, unitary modular tensor category (UMTC) theory. Perhaps

now is a good time to mention the most elementary distinction, between abelian and

non-abelian topological order. By fusion of anyons, I mean the following. An anyon

is a particle whose presence can be detected from a distance, by circling some other

excitation around it and measuring the change of the resulting state. Given two anyon

types a and b, I can consider circling other excitations around both of them. If I have
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a complete basis of all the anyon types in the topological order under study, the result

must look like one of them, but which one we get need not be uniquely determined:

a× b = c1 + c2 + · · · . (1.5)

If the fusion rules look like the special case

a× b = c

(a group law) for all the anyons, we say the topological order is abelian. Braiding such

particles merely acts by a phase on the resulting unique state. In contrast, fusion rules

like (1.5) require that the lowest-energy state in the presence of a and b is degenerate;

in this case, braiding the two particles involves not only a phase, but a whole unitary

matrix acting on this degenerate subspace.

If you have studied conformal field theory (CFT), you will notice a formal similarity

between (1.5) and the operator product expansion. This is not a coincidence – a 2d

CFT also defines a UMTC. In fact, the structure was defined first in that context, by

Moore and Seiberg.

It was believed for a long time that all gapped phases are described at the lowest

energies by a TQFT. However, this is not true. An interesting special case of topologi-

cally ordered states is fracton phases. A fracton phase has excitations (called fractons)

that cannot be moved by any local operator (perhaps only in some directions of space).

This is a strictly stronger condition than topological order, since an excitation can ef-

fectively be moved by annihilating it and creating it again elsewhere. This means that

a fracton phase has a number of anyon types that grows with the system size – fractons

in different places are really distinct anyons, since they are not related by any local

operator. A consequence of this defining property is a groundstate degeneracy whose

logarithm grows linearly with system size, and a subleading linear term in the scaling

of the entanglement entropy of a region with the size of the region. Thus, the system

knows about the geometry of space, and not just the topology, and hence cannot be

described by an ordinary TQFT.

Gaplessness is something special that needs to be explained. An energy

gap (and no topological order or special edge modes) should probably be the generic

expectation for what happens if you pile together a bunch of degrees of freedom and

couple them in some haphazard (even translation invariant) way. At the very least this

follows on general grounds of pessimism: if you generically got something interesting by

doing this, physics would be a lot easier (or more likely: we wouldn’t find it interesting

anymore). More seriously, gaplessness is an extreme case of a finite degeneracy: if

allowed local operators could mix the the low-lying states, the levels would repel and

create a gap under generic perturbations of the Hamiltonian.
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Here is a list of some possible reasons for gaplessness (if you find another, you

should tell me):

1. tuning to a critical point – notice that this requires some agent to do the tun-

ing, and will only occur on some subspace of the space of couplings of nonzero

codimension.

2. spontaneously-broken continuous symmetry (Goldstone bosons).

3. continuous unbroken gauge invariance (e.g. photons). Actually, this is a special

case of item 2 for continuous one-form symmetries. If you are eager to learn more

about this point of view, take a look here.

4. Fermi surface (basically only in this case do we get gapless degrees of freedom at

some locus of dimension greater than one in momentum space)

5. edge of an invertible topological phase. Here the gaplessness or degeneracy is

protected by an anomaly.

6. a symmetry that forbids mass terms in some other way. This is called ‘technical

naturalness’. An example is unbroken chiral symmetry, which forbids fermion

masses. This is an explanation of the lightness of quarks and leptons in the

Standard Model compared to the Planck scale. Supersymmetry (where chiral

symmetry prevents fermion masses, and supersymmetry relates boson masses to

fermion masses) goes in this category.

7. CFT with no relevant operators. I am not sure if there are examples of this which

are not examples of item 3. Sometimes this is called self-organized criticality. See

here for a recent search.

Each entry in this list is something to be understood14. If you encounter a gapless

model and it does not fit into this list then I will bet you $5 that it is fine tuned,

meaning that its creator simply didn’t add enough terms to the Hamiltonian.

We can no longer define the boundary of a gapless phase by a wall of gap-closing.

Instead, a useful definition that works for both gapped and gapless cases is that per-

turbation theory (in the difference of Hamiltonians) works within the phase. A phase

14Note that the masslessness of the graviton is a mystery not obviously solved by an element of this

list.

22

https://arxiv.org/abs/2204.03045
https://arxiv.org/abs/1501.02280


is thus an equivalence class of hamiltonians such that within the phase, physics (ther-

modynamics, local operator expectations) varies smoothly15.

Refinement by symmetry. Another important axis along which we may organize

states of matter is by symmetry. Specifically, we can label states according to the

symmetry group G that acts on their Hilbert space, and restrict our discussion to

the space of Hamiltonians to those which are preserved by G. Here I am speaking

about what are called global symmetries, that is, symmetries (not redundancies of our

labelling, like gauge transformations).

Now, in the presence of a symmetry, for each H, we can ask whether the symmetry

preserved by the groundstate? If not, this is called spontaneous symmetry breaking,

and provides a label that distinguishes that state from the trivial state. This is the old

story of classifying phases with symmetries.

But there is something else that can happen. There can be phase boundaries (walls

of gaplessness) that cannot be circumvented within the space G-symmetric Hamilto-

nians, but which we can go around if we allow G-breaking terms in H. The example

of SSB is already of this form: if we explicitly break the symmetry, there is no longer

a sharp distinction between the paramagnetic phase and the broken phase, and we

can go around the phase transition. (Consider the phase diagram of the Ising model

including a longitudinal field.) If a G-symmetric state is connected to the trivial phase

in the space of all H but not in the space of G-symmetric Hamiltonians, and does

not spontaneously break G, it is called an SPT (symmetry-protected topological) state

(protected by G). Such a state is very nearly trivial and we may wonder how it can

be distinguished from the trivial state. The answer is that the edge theory realizes the

symmetry in an interesting way, more precisely in an anomalous way. More on this

later.

We can also have both topological order and anomalous edge modes. Various such

G-symmetric states with topological order are called SET (symmetry-enriched topo-

logical) states.

Entanglement. An important perspective for organizing our understanding of quan-

tum phases of matter – on which we focus for the rest of this chapter – is the amount

and structure of entanglement in the groundstate.

A pure state is completely unentangled if it is a product state, ⊗x |sx〉. In a phase

15An annoying fact is that sometimes within a phase there are observables which vary non-

analytically across a point where the thermodynamics and all local observables are perfectly smooth.

A classic example is the roughening transition of Wilson loops in lattice gauge theory. So when I say

‘physics varies smoothly’ I really mean local observables. For non-local Hamiltonians, we do not even

know how to define a notion of phase.
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with a product-state representative, mean field theory applies. (And when it applies

it is very useful: it predicts phase transitions and the associated critical theory of the

order parameter, and even the excitation spectrum (e.g. spin waves).) Such states can

be distinguished only by symmetries acting independently on each site. This problem

is approximately solved (from the point of view of the experiment-free discussion of

condensed matter physics we are having – of course the questions about energetic

competition, which we are completely ignoring, can be very interesting from other

points of view) by the representation theory of G. Elsewhere in such a phase, the

effects of entanglement are a perturbative correction to non-universal quantities.

We’ve just defined what is ‘unentangled’. We will want to be more quantitative

about entanglement betweenA and its complement Ā; hereH = A⊗Ā is any bipartition

of the Hilbert space, such as a region of space. Since we are talking about pure states

(as opposed to e.g. thermal density matrices), we can do this using the entanglement

entropy:

ρA ≡ trĀ|ψ〉〈ψ| SA ≡ −trρA logρA .

This vanishes for product states. It equals log 2 for |ψ〉AB = (|00〉+ |11〉) /
√

2, a single

Bell pair. The dependence of SA on the size and shape of A provides a lot of information

about a state, some of which is universal, meaning a property of the phase, independent

of the representative state.

So: highly-entangled and mean-field are antonyms. The description in terms of

weakly-interacting waves above an ordered groundstate breaks down when the entan-

glement matters. The frontier of our understanding is states of matter where quantum

mechanics is essential, not just a correction that can be included perturbatively. This

is now a big industry (some interesting reviews are 1210.1281, 1302.0899) and I will

try to give some flavor of it. The states of interest here are distinguished instead by

their patterns of quantum entanglement. Furthermore, since such new states of matter

are distinguished by different new kinds of orders, the phase transitions which sepa-

rate them go beyond those described by fluctuations of local symmetry-breaking order

parameters. This leads to new renormalization-group fixed points and new conformal

field theories (CFTs).

1.4 Adiabatic continuation and local unitary circuits

[Zeng, Chen, Zhou, Wen, chapter 7] A useful alternative characterization of a gapped

phase motivates this entanglement-based point of view.

First, a quantum phase is actually a property of the groundstate. This statement

is a version of the Principle of Entanglement Bootstrap: all the universal data about
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a phase of matter can be extracted from a single wavefunction, even just the density

matrix of a ball. For example, the groundstate seems to know whether it is gapped

or gapless, because in the former case the equal-time correlation functions will fall off

exponentially. In the case of topological order, all of the data about the characteristic

anyon excitations are encoded in the groundstate wavefunctions on a torus (see here)

or indeed even a single wavefunction (see here or, most elegantly, here). We’ll see some

evidence below.

Claim: Two groundstates are representatives of the same phase16 iff there is a

quasi-local unitary circuit U of finite depth (the depth of a circuit is the (maximum)

number of elementary gates acting on each site, ‘finite’ means independent of L, and

I will explain quasi-local below) which maps one state to the other17. In symbols,

[H0] = [H1]⇔ |ψ(1)〉 = U |ψ(0)〉.

[End of Lecture 3]

⇒ Suppose there is a path H(s) in the space of Hamiltonians starting at H0 (whose

groundstate is |ψ(0)〉) and ending at H1 (whose groundstate is |ψ(1)〉), with a gap for

every s in between. In finite volume, the adiabatic theorem says we can construct

a unitary which probably maps |ψ(0)〉 to |ψ(1)〉, namely slow-enough time-evolution

along the path H(s),

T ei
∫ 1
0 dtH(t) |ψ(0)〉 ∝ |ψ(0)〉+ · · · . (1.6)

Slow enough means compared to the timescale set by the gap, 1/∆. Since the gap is

independent of L, the required duration is too. The failure rate (the amplitude for the

· · · in (1.6), however, is extensive. This problem can be fixed by a procedure called

quasi-adiabatic filtering introduced by Hastings (a review is here) – one can construct

a modified family of Hamiltonians H̃(s) which are almost as local18 but precisely map

groundstates to groundstates (the idea is to filter out the contributions from the excited

states to which non-adiabatic transitions can happen)

|ψ(1)〉 = T ei
∫ 1
0 dtH̃(t) |ψ(0)〉 .

(So really the title of this section should have been ‘quasi-adiabatic continuation...’.)

16In this discussion, we assume that the hamiltonians have a unique groundstate. So if we are

talking about a phase with TO, we study it on a simply-connected space. The notion of phase is a

local property.
17Actually, if you look back at our definition of gapped phase, we should also allow ourselves to

tensor in ancillas in a product state before acting with the unitary.
18I’ve oversimplified the discussion here. Actually, there is a trade-off between locality of the

filtered H̃ and the precision with which the groundstates are mapped to each other. In fact, in order

to precisely map the groundstates to each other, the operators H̃x must have some tails, that is

they have a profile which behaves like e−r
1−δ

where r is the distance from the point x – not quite

exponential decay. This is the meaning of the modifier ‘quasi-local’. Approximations to the exact

map which are just as good for practical purposes can be made with H̃x which are strictly local.
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Now this continuous time evolution can be Trotter-

ized. That is, we can approximate it by a circuit,

by breaking the time evolution into tiny steps. The

crucial ingredient is the Baker-Campbell-Hausdorff

formula, in the form

ei
∑
xHx∆t =

∏
x

eiHx∆t +O(∆t2). (1.7)

The range of the terms in the Hamiltonian then de-

termines the range of the individual unitary gates.

The crucial point is that finite time evolution (in-

dependent of L) means a finite number of layers of

elementary gates – this is a finite-depth circuit.

Thus we can regard circuits and unitaries from continuous-time evolution by local

Hamiltonians as equivalent. A key point which is visible from the circuit picture is

that there is a useful notion of lightcone, even in non-relativistic systems. Consider

the domain of influence of a given input qubit in the circuit. It cannot effect output

qubits that are arbitrarily far away, because the information about it only propagates

by the local gates. The rigorous version of this statement is called the Lieb-Robinson

bound.

Lieb-Robinson bound. Even non-relativistic theories have lightcones. Given

a local Hamiltonian H =
∑

Z HZ where the terms HZ are supported on a subset

Z and ||HZ || shrinks rapidly with the diameter of Z (exponentially is good), then

we can bound the correlations of local operators (AX is supported on a set X

and AX(t) = e−iHtAXe
iHt is its time evolution by H):

|| [AX(t), BY ] || ≤ c3e
−c1dXY

(
e2c2t − 1

)
where dXY = mini∈X,y∈Y |i − j| is the distance between the sets X, Y and c3 =

2||AX ||||BY |||X|, c1, c2 are constants. The quantity 2c2/c1 is the Lieb-Robinson

velocity.

You can find a relatively accessible proof (and many important applications)

here.

⇐ Given a circuit U = T ei
∫ 1
0 dtH̃(t) that accomplishes |ψ(1)〉 = U |ψ(0)〉, we can

define U(s) ≡ T ei
∫ s
0 dtH̃(t) (just truncate the circuit at time s) and a family of states

|ψ(s)〉 = U(s) |ψ(0)〉. These states are the gapped groundstates of

H̃(s) =
∑
x

U(s)H̃xU(s)†
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(gapped because the spectrum is independent of s) where H(0) =
∑

x Hx is local,

meaning that each Hx has finite range ξ (independent of L); the range ξ̃ of the terms

in the filtered Hamiltonian H̃ =
∑

x H̃x is still effectively finite (in the sense that there

is still a Lieb-Robinson bound on its growth of correlations). But then the range of

U(s)H̃xU(s)† is bounded by ξ̃+svmax, where vmax is the maximum speed of propagation

of correlations via H̃(t ≤ s), which is again (according to the Lieb-Robinson bound)

independent of L. �

Notice that there is a lot of freedom in defining the unitary U that relates the two

groundstates – we’re actually only specifying its action on a single vector. What it does

to the excited states (for example, the fact that it preserves the spectrum) is largely

meaningless.

Here is an important consequence of this result. Recall that by a trivial phase

we’ll mean one with a representative groundstate which is a product state. This result

implies that any groundstate in a nontrivial phase cannot be made from a product

state by a finite-depth circuit. An example is a toric code ground state
∑

loops,C |C〉.

1.5 Entanglement, short and long

Mean field theory is product states, which means there is no entanglement between

regions of space at all. The next level of complication and interest to consider for

possible groundstates of quantum many body systems is the case of states obtained

by acting with a short-ranged quantum circuit of small depth on a product state.

Let us consider such states, which are called short-range-entangled. What does their

entanglement entropy of subregions look like and how do we distinguish which bits

might be properties of a phase?

Let us focus on d = 2 space dimensions for definiteness. If the entanglement is short-

ranged, we can construct a local ‘entanglement entropy density’ which is supported

along the boundary of the region A [Grover-Turner-Vishwanath], and follow the logic

of Landau theory to determine its form:

SA =

∮
∂A

sd` =

∮ (
Λ + bK + cK2 + ...

)
d` = Λ`(∂A) + b̃+

c̃

`(∂A)
+ ...

In the first step, we use the fact that the entanglement is localized at the boundary

between the region and its complement. In the second step we parametrize the local

entropy density functional in a derivative expansion; K is the extrinsic curvature of the

boundary. Since the total system is in a pure state, S(A) = S(Ā), which implies b = 0:

since interchanging A and Ā reverses the orientation of the boundary, the extrinsic

curvature cannot contribute. This means that the subsystem-size-independent term
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cannot come from terms local on the boundary; it is universal in the sense that it

cannot be changed by changing the UV regulator (e.g. by rearranging lattice details).

Where can such a term come from? For the example of the

groundstate of Z2 gauge theory (the toric code), a closed

string that enters the region A must leave again. This is one

missing bit of freedom for the reduced density matrix of A,

which means a contribution to the EE that is independent of

the size of A:

SA = |∂A|Λ− log 2 ≡ |∂A|Λ− γ (1.8)

where the area-law coefficient Λ is some short-distance-

dependent junk and γ is a universal characterization of the

nature of the topological order.

This is true for each component of the boundary of A indi-

vidually, so the generalization of (1.8) to regions with b0(∂A)

boundary components is S(A) = |∂A|Λ− γb0(∂A).

[fig: Tarun Grover]

The universal constant term γ is called the topological entanglement entropy (TEE)19.

For more general topological orders, γ can related to the spectrum of anyons; for

Abelian states γ is 1
2

log (#torus groundstates). A beautiful argument for this is the

Kitaev-Preskill wormhole construction (see their Fig. 2).

It is instructive to try to combine entropies of different regions to isolate the TEE

from the area-law junk.

19It was introduced for d = 2 by Hamma-Ionicioiu-Zanardi, Kitaev-Preskill, Levin-Wen; the higher-

dimensional generalizations are explained in the Grover et al paper linked above.
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If the entanglement is indeed all short-ranged, then for collec-

tions of regions where the boundaries cancel out, ∂(AB) +

∂(BC) = ∂(B) + ∂(ABC), (such as in the figure at right)

nothing will be left. Let S(x) be the EE of the subregion x

in the state in question.

I(A : C|B) := S(AB) + S(BC)− S(B)− S(ABC)

is the conditional mutual information – correlations between

variables A and C if we knew B. In general this combination

of entropies satisfies a deep inequality called Strong Subad-

ditivity (SSA), I(A : C|B) ≥ 0. In general gapped phases in

2d, for the arrangement of regions at right, I(A : C|B) = 2γ,

where γ is the subleading term to the area law defined in

(1.8). The area-law contributions cancel out pairwise (notice

that the corners cancel too).

The regions should be large compared to

the lattice spacing and the correlation

length.

When γ = 0, SSA is saturated. I(A : C|B) = 0 means ρABC is a ‘quantum Markov

chain,’ a state which can be reconstructed from its marginals ρA,ρB,ρC (by a formula

due to Petz). So the quantity γ is an obstruction to this automatic reconstruction of

the global state from local data.

The above argument shows that the TEE is not a short-distance artifact, but is

it a property of a phase for any choice of A,B,C? And is it only nonzero for states

with topological order? Almost. The papers linked above argue – assuming that the

system is a liquid – that the TEE is independent of small changes in the regions (using

SA = SĀ for pure states) and therefore insensitive to changes in the Hamiltonian that

keep the correlation length short. There is, however, an important exception if the

phase is not a liquid, whereby small changes of the regions lead the TEE to jump, and

to give nonzero answers in states without TO. A consolation is that the correct value

minimizes the answers you can get for γ.

In d = 3, ∂A is characterized by its number of components b0 and its number of

noncontractable loops b1; these are related by χ = 2b0 − b1 = V − E + F = 1
2π

∫
∂A
R

(the Gauss-Bonnet theorem) to the integral of a local density. The EE of A is linear

in b0 and b1 (see Appendix E of the Grover-Turner-Vishwanath paper) but only one

combination of them is a signature of long-range entanglement. Again this 3d TEE

can be extracted by combining regions whose boundaries and corners cancel.

The TEE is only one number characterizing the nature of the topological order,

and by no means uniquely characterizes it. For example, the double semion state

is a distinct topological order from the toric code in d = 2, whose representative

wavefunction is
∑

closed loops,C(−1)b0(C) |C〉 (where b0(C) is the number of components
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of the loops). As you can see from the form of the wavefunction it also has four

groundstates on the torus and hence the same TEE. However, by now humans have

learned to extract a great deal of the data specifying a given topological order from

the entanglement properties of a single wavefunction, the most advanced incarnation

of which is the entanglement bootstrap.

2 Some quantum Hall physics

By popular request, and because it still provides the best experimental examples of all

the most interesting quantum topology phenomena, let’s spend some time talking about

effective descriptions of quantum Hall physics, both fractional and integer. I warn you

that we will start from a distinctly macroscopic perspective, and will not say as much

as others do about the important microscopic questions of energetic competition. For a

perspective on those questions, I recommend chapters 12-14 of the textbook by Girvin

and Yang (or these lectures by Leggett). I learned about this aspect of the subject

from these notes by Girvin. For a great account of the whole subject I recommend

David Tong’s lectures.

2.1 Electromagnetic response of gapped states in D = 2 + 1

Let’s think about a gapped state of matter made of some stuff in D = 2 + 1, out

of which we can construct a conserved U(1) current jµ (if you like, think of it as the

current that keeps track of electron number). This means we can couple this current

to an external, background, non-dynamical gauge field Aµ, by adding to the action

functional like so:

Smicroscopic[the stuff,A] = Smicroscopic[the stuff] +

∫
jµAµ + · · ·

where · · · is whatever other terms are needed to make this action fully gauge invariant.

Here we’ll treat A as a background field that we control20. The theory with this

deformation is gauge invariant because the current is conserved ∂µj
µ = 0 (integrate by

parts).

Integrate out the stuff to see the electromagnetic response:

eiSeff[A] ≡
∫

[Dstuff]eiS[stuff,A].

20Notice that what we’ve done here is not gauging the U(1) symmetry. We are not changing the

Hilbert space of the system. The background gauge field here just describes a particular collection of

coupling constants.
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The fact that the term linear in A gives the current density:

〈jµ(x)〉 =
δ

δAµ(x)
Seff (2.1)

where the RHS is evaluated on the configuration of background fields of interest, which

could be A = 0. Terms quadratic in A encode linear response:

〈jµ(x)jν(y)〉 =
δ2

δAµ(x)δAν(y)
Seff.

Recall that 〈jj〉 is the main ingredient in Kubo’s formula for the conductivity.

Because the stuff is gapped, Seff is local. By the Landau-Ginzburg-Wilson logic,

we can then determine Seff[A] in a derivative expansion, as follows. To figure out the

power counting, note that A is a gauge field, which is something that we can add to

a derivative to make it a covariant derivative; therefore A has dimension 1, it counts

the same as a derivative.

Seff[A] =

∫  0 · A2︸ ︷︷ ︸
no symmetry breaking

+
ν

4π
A ∧ F +

1

g2
F··F ··

+ · · · . (2.2)

(F = dA.) The A2 term is forbidden by gauge invariance21. With time-reversal

symmetry (and only one gauge field), ν = 0. If ν 6= 0, Maxwell is less important than

the term with ν, the Chern-Simons (CS) term. (Actually, without Lorentz invariance

we can have non-vacuum dielectric constant and magnetic permittivity ε, µ, but this

won’t affect our story.) g is an energy scale that we can take to be large compared to

our energies of interest. [End of Lecture 4]

The Kubo formula then says that the Hall conductivity is:

σxy = lim
ω→0

1

iω
〈jxjy〉︸ ︷︷ ︸

= δ
δAx(k)

δ
δAy(k)

Seff[A]

|k=0 =
ν

2π

in experimenter’s units
= ν

e2

h
.

The analogous Kubo formula for the longitudinal conductivity σxx says that it is

zero. This is one sense in which the system is an insulator. Note that one could argue

with this characterization, since ρij = (σ−1)ij has ρxx = 0, like a perfect conductor.

While it’s true that there is no dissipation (since the current is perpendicular to the

voltage drop), no charge moves in the direction of the electric field, so I think it’s safe

to call it an insulator. Also, there’s an energy gap (by assumption).

21To make it gauge invariant, we would have to add more (gapless) degrees of freedom, in particular

the Goldstone mode φ for the broken U(1) symmetry, which would appear in the gauge-invariant

combination (∂µφ+Aµ)2.
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Next we’ll show that, if there is no fractionalization, ν is quantized to be an integer.

As a result, different values of ν label distinct phases of matter, since an integer can’t

change continuously. (Note that there could be further distinctions – states with the

same ν could be distinct.)

Notice that 2d is special here because the conductivity is essentially dimensionless,

and moreover the resistance is independent of the width of the sample:

Rxy = Vy/Ix = EyWy/Ix = Ey/jx =
1

σxy
.

(Here Wy is the width of the sample in the y direction, perpendicular to the current,

along the direction of voltage drop.) So it makes sense to say that σxy is quantized (in

units of the quantum of conductivity e2

h
).

Flux-threading. I must emphasize that the following argument involves an im-

portant special case of studying the response of the system to background fields, called

flux-threading. Rather than thinking about static background EM fields, we consider

(still externally-fixed) EM fields that slowly vary in time – in a loop.

Consider the system on an annulus (sometimes called, in this

context, the ‘Corbino geometry’). Adiabatically thread 2π

worth of magnetic flux through (a solenoid in) the hole in

the annulus. This means we slowly vary the magnetic field

in the hole, so that the change in flux is the flux quantum

Φ0 ≡ hc
e

= 2π.

In the following equation only I restore un-natural units:

Φ0 = ∆Φ =

∫
dt∂t

(∫
hole

d~a · ~B
)

Faraday
= −c

∫
dt

∮
C

~E · d~̀ jr=σxyEϕ
= − c

σxy

∫
dtIr︸ ︷︷ ︸

=∆Q

where C is a curve going around the hole, and Ir =
∮
C
jr is the total radial current

passing through the curve C. Note that Faraday’s law is the spatial components of the

equation dF = 0 stating the absence of magnetic monopoles, so does not depend on

the form of the effective action for the EM field.

We conclude that an amount of charge

∆Q =
Φ0

c
σxy = νe (2.3)
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(e is the charge of the electron) is transferred from one edge of the cylinder to the other.

Because of the energy gap, we can do the flux-threading adiabatically. Moreover, the

initial and final Hamiltonians are related by a gauge gransformation:

H(Φ = 0) ∼= H(Φ = 2π).

(We detect a magnetic field by moving a charged particle around a loop and acquiring

a phase eiq
∮
C A; since the charge is quantized to be an integer, 2π flux is the same as

no flux.) They have the same spectrum. Moreover, the work done on the system is∫
IdΦ ∝

∫
dt
(
dΦ
dt

)2
which goes to zero in the thermodynamic limit, if our process is

adiabatic. Therefore the initial and final states must be degenerate in the thermody-

namic limit. But the adiabatic deformation can take one state to another. The states

differ in that an amount of charge ν has been moved from one boundary to the other.

Since, in the absence of fractionalization, charge is carried only by electrons, localized

objects with integer charge, we conclude Z 3 ν = ∆Q/e = σxy.

If we make the further assumption that the states can be labelled with the same

labels as free-electron states, i.e. electron occupation numbers, we can say more. We’ve

identified two different states related by the flux threading. The single-particle states

whose occupation numbers have changed must lie near the Fermi level. Since we’ve

assumed the bulk is gapped, we conclude that there must be gapless edge states.

The following argument implies further that a gapped system with σxy = ν e
2

h

hosts a particle excitation with charge νe and exchange statistics πν.

Now consider the system on the plane. Adiabatically thread 2π worth of localized

magnetic flux through some localized region R of the sample (as in the ⊗ at right).

To do this, we have to stick a really thin solenoid through the 2d surface on which the

system lives. This means as above that (I now return to units with ~ = c = e = 1)

2π = ∆Φ =

∫
dt∂t

(∫
R|∂R=C

d~a · ~B
)

Faraday
= −

∫
dt

∮
C

~E · d~̀ jr=σxyEϕ
= − 1

σxy

∫
dtjr︸ ︷︷ ︸

=∆Q

.

We conclude that the inserted flux sucks in an amount of charge

∆Q = νe.

Because of the energy gap, we can do this adiabatically. And because the flux is a

multiple of 2π we end up with another state of the same system – the inserted flux is

not an extrinsic defect22. This object is a localized excitation of the system – it can

22This is slightly less obvious than in the case where the flux was in a hole in the system. Put the
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move around, it’s a particle23. And if ν /∈ Z, it has fractional charge νe.

But now consider two of them. From the Bohm-Aharonov effect, each has statistics

angle πσxy (for σxy = e2

h
, this is a fermion). Therefore, no topological order (hence no

fractional statistics) implies (again) that σxy ∈ Z e2

h
.

This argument has a stronger consequence for a system made only of bosons: In a

gapped state with no fractionalization, all particles, including this one, must have the

same statistics as the microscopic constituents. For a non-fractionalized state made

from fermions, we can conclude that ν ∈ Z, since odd ν will produce a fermionic

particle. But for a system made only of bosons, without topological order, σxy must

be an even multiple of e2

h
. For a careful recent discussion of these arguments, see here.

Roles of topology. Quantum Hall insulators provide examples that are topological

in two distinct ways. The Hall conductivity (apply small electric field in x direction,

measure current in y direction, take ratio)

σxy =
p

q

e2

h
(2.4)

is a rational number – p, q ∈ Z – despite (in fact, with the help of)24 disorder.

1. The integer quantum Hall effect (IQHE) is governed by (2.4) with q = 1. We

know such a phase with p 6= 0 is not adiabatically connected to the trivial phase

solenoid at the origin and choose the gauge A = Φ0
dϕ
2π , where ϕ is the azimuthal coordinate in the

plane (this is the field involved with the flux-threading, in addition to any magnetic field responsible

for supporting the quantum Hall state). The gauge transformation that removes A is g = eiϕ, which

is singular at the origin of polar coordinates. This singularity has no effect, since it just changes the

overall phase of the wavefunction, Ψ→ Ψ
∏
j e

iϕj .
23Here’s something I’m confused about at the moment. Unlike in the case of the ‘Corbino geometry’

above, where the flux was inserted in a hole in the sample, in this case we do expect that the final

state has a different energy than the initial state – the quasiparticle we’ve created has some rest mass

larger than zero, and (by charge conservation) the gap should be of order twice this value. Where

does the argument about the work done break down?
24If the system is translation invariant, one can show that the Hall conductivity must be strictly

linear in the continuously-variable filling fraction ν = ρΦ0/B (ρ is the electron density, Φ0 = hc/e is

the flux quantum), so there can be no quantized plateaux. One possibility for breaking the symmetry

leading to this conclusion is disorder; this is the sense in which it helps. (It is then less obvious

that it doesn’t just make the Hall conductivity zero by Anderson localizing all the states.) Another

possibility is that the symmetry could be broken spontaneously, as discussed here. Another possibility

is the presence of a lattice – the effective description of QHE in terms of Chern-Simons gauge theory

works just as well for Chern insulators, i.e. a tight-binding model of fermions hopping a lattice where

the filled bands have a nonzero Chern number. We will talk about Chern insulators more later on. It

seems to me that another possibility could be boundaries of the sample.
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because this integer cannot vary continuously – it’s definitely a distinct phase of

matter. This happens for free electrons filling Landau levels or Chern bands. The

quantization p ∈ Z arises because of topology of single-particle orbits; p is the

Chern number. This does not exhibit topological order. This is an example of a

‘topological insulator’. It is a band insulator – the electrons completely fill some

bands, and therefore there is an energy gap, measured by the energy difference to

the next band (or to the next Landau level, i.e. the cyclotron frequency eB/m).

What’s special about such a phase? We’ll see below that it has gapless edge

modes.

Chern bands. To understand the possibility of IQHE without a magnetic field,

first consider the possibility that our electrons in a 2d electron gas (2DEG) in a

big magnetic field may be constrained to live at the sites of a lattice. (In fact

this could be true of all the degrees of freedom of the Standard Model for all we

know, if the lattice spacing is small enough.) That is, it could be described by a

tight-binding model, like

HB=0 = −
∑
ij

tc†icj + h.c. (2.5)

where i, j label sites of a lattice (say the square lattice). This hamiltonian is

solved by going to Fourier space

ck ∝
∑
i

ei
~k·~rici (2.6)

so that H =
∫

BZ
c†kckε(k). If we expand ε(k) about the minimum, it will gener-

ically be quadratic and we get back a continuum description of non-relativistic

electrons.

How do we include the magnetic field in such a description? The answer is that

we replace the hopping parameter t→ teiaij so that

HB = −
∑
ij

teiaijc†icj + h.c. (2.7)

with

aij =
2π

Φ0

∫ ~rj

~ri

~A(r) · d~r. (2.8)

(This is called Peierls’ substitution.)

Consider the case with ~B = ~∇ × ~A = Bẑ uniform. The description depends a

bit on whether Φ2 ≡
∮
∂2

~A · d`, the flux through a single plaquette, is a rational
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multiple of Φ0. For simplicity assume that it is, say Φ2 = Φ0/k, k ∈ Z. Then we

can choose the phases so that there is a finite unit cell (with k sites) as follows:

We’ll choose an analog of ~A = −Bxŷ gauge. This is accomplished by choosing

t(x,y),(x,y+1) = ωx, ω ≡ e
2πi
k . (2.9)

With this choice of phases, the holonomy around each square
∏

`∈∂2 t` is equal

to ω. (Note that tij = t?ji.)

Again we can diagonalize the resulting Hamiltonian in momentum space, but

now the unit cell has k sites, so there will be k bands:

ckα ∝
∑
i

ei
~k·~rici+αx̂ (2.10)

so that H =
∫

BZ
c†kαckαεα(k). As k grows, these bands get flatter and flatter and

it becomes a better approximation to the continuum Landau levels.

But what’s special about these bands that if I fill some of them I get a nonzero

quantized Hall response? The answer is given by the following formula, called the

TKNN formula. For any free fermion system, with some number of fully-filled

bands, the Hall conductivity is

σxy = −e
2

h

∑
occupied bands,α

Cα (2.11)

where Cα is the Chern number of band α, defined as follows:

Cα ≡
1

2π

∫
BZ

Fα, Fα ≡
(
~∇k ×Aα

)
z
, (2.12)

where F is the Berry curvature, and

Aαµ ≡ i 〈uα(k)| ∂kµ |uα(k)〉 (2.13)

is the Berry connection. Here |uα(k)〉 is the wavefunction at momentum k of the

αth band. The numbers Cα are always integers if the bands don’t touch each

other. We’ll talk later about why this formula is true, and how to think about

it so that it is robust to including interactions.

2. The fractional quantum Hall effect (FQHE) is described by q ≥ 2, and requires

interactions. There is necessarily topological order. q ∈ Z because of the topology

of many-body wave function. The electron fractionalizes: as we’ll see excitations
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have charge 1/q, fractional statistics.

Perhaps I should pause to emphasize that so far we have assumed that a bunch of

stuff in D = 2 + 1 with a conserved charge but without time-reversal symmetry (such

as a 2d electron gas in a magnetic field) can form a state with an energy gap. What

we’ve shown, using the Landau-Ginzburg-Wilson logic, is that if this does happen, the

system exhibits a quantized Hall conductivity. It is a remarkable fact, not at all obvious

from anything we’ve said here, that this actually happens. As evidence, I include the

classic plot:

In this plot, the electron density is fixed, and the horizontal axis varies B. The key

point is that around the value of B where the actual filling fraction (number of electrons

per flux quantum) hits certain microscopically-preferred rational values, the measured

σxy shows a plateau (along which σxx = 0), in striking contrast with the prediction

from translation symmetry25. When deforming away from the middle of the plateau,

25Theorem: translation symmetry implies σxy = ρec
B , where ρ is the electron density. Consider the

Hamiltonian H for a 2d collection of electrons in a uniform magnetic field ~B = Bẑ, with ~E = Eŷ

uniform as well. Choose the gauge ~A(r, t) = (−cEt + Bx)ŷ. Gauge invariance means that the

momentum of the ith electron appears in H only in the combination ~Π = ~pi + e
c
~A(ri, t). Remove the

Et term by changing variables to ~r′i = ~ri − cEB tx̂, ~p
′
i = pi, t

′ = t. The current in the new frame is

j′x = −ρe
〈
Ẋ ′
〉

where X ′ is the center-of-mass position in the x̂ direction. This is time-independent.

The center-of-mass momentum in the y direction P ′y = Py ≡
∑
j(pj)y is conserved. Therefore if〈

Ẋ ′
〉
6= 0, Π′y =

∑
i((p

′
i)y + e

cBX
′ would blow up, and therefore so would the kinetic energy. We

conclude that 0 =
〈
Ẋ ′
〉
∝ j′x = 0. But ~j′(r′) = ~j(r) + ecEBρx̂ and therefore

jx = −ρecE
B

= σxyEy

from which we conclude σxy = −ρecB without any further assumptions. A closely-related argument
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the extra electrons must somehow be prevented from participating in the transport –

they are somehow localized, either by disorder or by forming a (Wigner) crystal.

2.2 Abelian Chern-Simons theory

[Wen’s book or this review; Zee, Quantum Hall Fluids; Zee’s QFT book §VI.2] I want

to explain an example of how properties 1 and 2 can be realized in a simple physical

system, using the EFT (effective field theory) that describes the canonical examples of

topologically-ordered states: (abelian) fractional quantum Hall states in D = 2 + 1.

The low-energy effective field theory is Chern-Simons-Witten gauge theory, whose

basic action is:

S0[aI ] =
n∑
IJ

KIJ

4π

∫
aI ∧ daJ (2.14)

aI are a collection of abelian gauge fields.

Where did these gauge fields come from? We’ll discuss some perhaps-more-informative

possibilities below, but one very simple way to motivate their introduction is as follows.

By assumption, our system has a conserved U(1) current, Jµ, satisfying ∂µJ
µ = 0. In

D = 2 + 1, we can solve this equation by introducing a field a and writing

Jµ ∝ εµνρ∂νaρ. (2.15)

The continuity equation is automatic if J can be written this way (for nonsingular a) by

symmetry of the mixed partials. (The equation could also be solved by a sum of such

terms, as we write below. This ambiguity reflects some of the enormous multiplicity

of different quantum Hall states.) Then we must guess what dynamics should govern

a. Here we just add all terms allowed by the symmetries, as usual. When it’s not

forbidden by time-reversal symmetry or parity, the Chern-Simons term is the most

important term at low energies.

Notice that we wrote this action in a coordinate-invariant way without needing to

mention a metric. This is a topological field theory. In the absence of charges, the

equations of motion say simply that 0 = δS0

δa
∝ f = da. Unlike Maxwell theory, there

are no local, gauge invariant degrees of freedom. And, by Legendre transformation,

the Hamiltonian is just zero. It is a theory of groundstates.

[End of Lecture 5]

Consider the simplest case of (2.14) with a single such field a, S0[a] =
∫

k
4π
a ∧ da.

As we’ll see, this describes e.g. the Laughlin state of electrons at ν = 1/k for k an

assuming boost invariance appears in many places, in particular in the Girvin lectures.
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odd integer. (More general K describe the so-called hierarchy states, and give some

understanding of the pattern of plateaux that appear.)

When I say there are no local dofs, I am thinking of the limit where we totally

ignore the Maxwell term. The Maxwell term is irrelevant: its effects go away at low

energies. Let’s add it back in and look at the spectrum of fluctuations with the action:

L =
k

4π
εµνρaµ∂νaρ +

1

4M
fµνf

µν

where M is some microscopic energy scale above which the Maxwell term matters. The

equation of motion is

0 =
δS

δaλ
=

k

2π
ελρνfρν +

∂µf
µλ

M
. (2.16)

In terms of fλ ≡ ελρσfρσ this is

εµνρ∂νfρ +
Mk

2π
fµ = 0. (2.17)

Taking curl of the BHS (εµαβ∂
α(BHS)) gives(
∂µ∂

µ −
(
M

k

2π

)2
)
fρ = 0. (2.18)

This is the dispersion relation for an excitation of mass Mk
2π

. As M →∞, the excitation

goes off to infinite energy.

If we demand that (2.14) is invariant (or rather eiS0 is invariant) under U(1)n gauge

transformations, including large gauge transformations, then k must be an integer26.

26Note that when k is odd, our flux-threading argument shows the existence of gauge-invariant

fermionic excitations, and so can only arise from a theory with microscopic fermions.

To see the mysterious factor of two, here is my advice:

1. Recall that
∫
a1 ∧ da2 =

∫
a2 ∧ da1 by IBP. This is why the K-matrix is symmetric.

2. Consider the system on a spacetime of the form S1 × Sg, where Sg is a compact Riemann

surface. An arbitrary connection on such a spacetime is of the form a = a1 + a2 where a1,2 are

polarized along the first and second factor of the spacetime respectively. Then∫
a ∧ da =

∫
(a1 ∧ da2 + a2 ∧ da1) . (2.19)

Note that the second term need not be zero because a1 can still depend on the coordinates of

Sg. Using the first item, this gives

1

4π

∫
a ∧ da =

1

2π

∫
a1 ∧ da2. (2.20)

3. Now consider the variation a→ a+ ig−1dg, g = eiϕ, where ϕ is the coordinate along the circle.

Thanks to Aidan Sheckler for help with this.
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From the point of view of (2.15), the demand that the gauge group is really U(1), and

the concomitant quantization of flux of da, comes from demanding that the charge

of the current Jµ is quantized (in units of the charge of the electron). It’s pretty

interesting that this seemingly-metaphysical microscopic information that all charges

come in integer multiples of the electron charge has such strong consequences for the

low-energy description of macroscopic quantum phases.

Flux quantization. A crucial ingredient in the above argument for the quan-

tization of the level is the fact of flux quantization. This is a consequence of the

fact that the gauge gauge group is compact, in this case U(1) (as opposed to

R). Flux quantization is also the reason that the TKNN invariant (aka Chern

number of a band) (2.12) is an integer, so I really should have explained it earlier.

Let me stop to say a few words about it. The basic statement is that the integral

of the flux F over a closed submanifold is a topological property.

I’m just going to explain the basic example of the phenomenon. To begin, let’s

think about a configuration of the electromagnetic field in 3-space with a mag-

netic monopole at the origin, i.e. satisfying ~∇ · B = 4πgδ3(x). The LHS of this

equation is the time component of the 1-form ?dF = ?d2A, so A must not be

globally well-defined or else this would vanish. A way out is to cover space with

patches. Actually, all the action happens on the unit sphere surrounding the

monopole (that is, R3 \ {0} ' S2), so let’s just think about that. We cover this

two-sphere with two patches UN and US consisting of everything but the south

and north poles respectively. The overlap deformation retracts to the equator.

On UN and US respectively we take the gauge potential to bea

AN = g(1− cos θ)dϕ, AS = g(−1− cos θ)dϕ = AN − 2gdϕ = AN + ig−1
NSdgNS

where

gNS(θ, ϕ) ≡ ei2gϕ

is a function on UN ∩US. Notice that F = dAN = dAS = g sin θdθ∧ dϕ are both

proportional to the volume form on the 2-sphere, consistent with the demand that

magnetic flux is coming out from the origin in a spherically-symmetric way. gNS
has two names here: Mathematically, it is the transition function for a complex

vector bundle of rank one between our two patches on the 2-sphere. Physically

it is a function parameterizing a gauge transformation

A→ Ag = g−1 (A− id) g. (2.21)

between two choices of gauge for the vector potential.
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What is the structure group G of the vector bundle in question? gNS is single

valued under ϕ ∼= ϕ+ 2π and therefore G = U(1) iff

4πg ∈ 2πZ. (2.22)

This is the Dirac quantization condition. Notice that we didn’t actually say any-

thing about quantum mechanics. We just demanded that there was some U(1)-

valued transition function connecting the gauge potentials on the two patches.

Quantum mechanics comes in for example if we put a charged particle in this

background field, because the phase of the wavefunction of a charged particle

transforms under a gauge transformation by multiplication by the transition

function; if this isn’t single-valued, the wavefunction is not well-defined. In that

context, this is the physical reason we want the structure group to be U(1) and

not R.

This conclusion leads to flux quantization: A vector bundle with a compact

structure group has quantized fluxes,
∮
S
F
2π
∈ Z, where S is any compact 2d

submanifold of B. In this example, we have∮
S2

F

2π
=

1

2π

(∫
HN

dAN +

∫
HS

dAS
)

Stokes
=

1

2π

∮
equator

(
AN − AS

)
(2.23)

= − 1

2π

∮
equator

ig−1
NSdgNS =

1

2π

∫ 2π

0

2gdϕ = 2g
(2.22)
∈ Z

where HN and HS are the north and south hemispheres, which lie respectively

in UN and US and which have ∂HN/S = ±equator.

Although I explained it in the context of a U(1) bundle on S2 this phenomenon is

general for compact gauge groups. In the case of the TKNN invariant, the Bloch

wavefunctions define a U(1) bundle on the Brillouin zone, which is a 2-torus.

In this case the structure group is U(1) because the gauge transformations are

associated with rephasing the (normalized) wavefunction ψ(k) → g(k)ψ(k), so

g(k) = eiφ(k) is a phase.

Let me be more explicit about this bundle over the BZ defined by some Bloch

bands in 2d. The eigenfunctions are defined by h(k)uα(k) = εαuα(k). Because

space is a lattice, k takes values in a 2-torus. Let’s think about the special case

when there are two bands, α = ±1, so the hamiltonian takes the form

h(k) = a0(k)1 +
∑
i=x,y,z

σiai(k). (2.24)

The a0(k) bit doesn’t affect the eigenfunctions so forget it. Assuming the gap is

nonzero for all k requires X ≡
∑

i(a
i(k))2 > 0. Without changing the topology
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we can divide h by X so that (the new) ai(k) defines a unit vector, i.e. a point

on S2. So ai(k) is a map from T 2 to S2. The ai determine the wavefunctions by

u−(k) =

(
cos θ(k)

2

sin θ(k)
2
eiϕ(k)

)
(2.25)

where θ(k), ϕ(k) are the polar coordinates on S2 labelling ai(k). From this

information you can check that the Chern numbers of the two bands are just

plus or minus the number of times the T 2 winds around the S2.

aI’m using polar coordinates on the unit sphere where x = sin θ cosϕ, y = sin θ sinϕ, z =

cos θ.

More generally, K must be a symmetric matrix (don’t forget the sign from integra-

tion by parts) of integers.

Two more ingredients are required for this abelian CS theory to describe the low-

energy EFT of a quantum Hall state:

(1) We must say how the stuff is coupled to the EM field. Notice that these gauge

fields imply conserved currents jIµ = 1
2π
εµνρ∂νa

I
ρ. This is automatically conserved by

antisymmetry of εµνρ, as long as a is single-valued. In its realization as the EFT for a

quantum Hall state, a linear combination of these currents is coupled to the external

EM field Aµ:

SEM [aI ,A] =

∫
AµtIjIµ ,

i.e. the actual EM current is Jµ =
∑

I tIj
I
µ. The normalization is determined so that

flux quantization implies quantization of charge.

(2) Finally, we must include information about the (gapped) quasiparticle excita-

tions of the system. Creating a quasiparticle excitation costs some energy of order the

energy gap, and their dynamics is not included in this ultra-low-energy description. As

I described above, however, the quantum numbers of these excitations is a crucial part

of the data specifying the topological order. This is encoded by adding (conserved)

currents minimally coupled to the CS gauge fields:

Sqp =

∫
aIj

I
qp.

Alternatively, we can think of this as inserting Wilson lines ei
∮
W aIqI along the trajec-

tories W of a (probe) anyon of charge qI .

Now let’s show item 1, fractional statistics, in the simplest case with a 1 × 1 K-

matrix. In this case, the quasiparticles are anyons of charge e/k. The idea of how this
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is accomplished is called flux attachment. The CS equation of motion is 0 = δS
δaµ
∼

−εµνρfνρ k
2π

+ jµqp, where jqp is a quasiparticle current, coupling minimally to the CS

gauge field. The time component of this equation µ = t says b = 2π
k
ρ – a charge gets

2π/k worth of magnetic flux attached to it. Then if we bring another quasiparticle

in a loop C around it, the phase of its wavefunction changes by (the ordinary Bohm-

Aharonov effect)

∆ϕ12 = q1

∮
C

a = q1

∫
R,∂R=C

b = q1
2π

k
q2.

Hence, the quasiparticles have fractional braiding statistics27 .

Now topological order property 2: # of groundstates = |det(K)|genus. Consider

the simplest case, where K = k, and put the system on a torus T 2 = S1 × S1. The

gauge-invariant operators acting on the Hilbert space of the CS theory on a torus are

of the form Fx ≡ ei
∮
Cx

a,Fy ≡ e
i
∮
Cy

a
and integer powers of these operators. These

are the operators that transport the anyons around the cycles of the torus. The re-

striction to integers comes from the demand that they are invariant under large gauge

transformations, which take
∮
C
a→

∮
C
a+ 2πZ. According to the CS action, ax is the

canonical momentum of ay. Canonical quantization then implies that

[ax(r), ay(r
′)] =

2πi

k
δ2(r − r′)

and hence (by the BCH formula) that these flux-insertion operators satisfy a Heisenberg

algebra: FxFy = FyFxe2πi/k. The smallest irrep of this algebra is k dimensional, where

Fx and Fy look like clock and shift matrices.

If space is a Riemann surface with g handles (like this: ),

then there are g pairs of such operators, so g independent Heisenberg algebras, all of

which commute with the Hamiltonian, and hence kg groundstates.

It is also possible to show that CS theory also exhibits the third property of long-

range entanglement. See here.

This description shows a quasiparticle with charge e/k: If we stick in a quasiparticle

at the origin, the equations of motion become

0 =
δS

δa0(x)
=

k

2π
fxy − δ2(x). (2.26)

27The fractional statistics of the charge- 1
3 quasiparticles of the ν = 1/3 Laughlin state were finally

observed experimentally just recently. Their charge had been measured using shot-noise measurements

long ago.
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From the relation Jµ = e
2π
εµνρ∂νaρ, the actual electric charge is then

ρ = e
1

2π
fxy =

e

k
δ2(x). (2.27)

Finally, we can do the (gaussian!) path integral over a to produce an effective action

for A of the form (2.2). (Complete the square.) We find a rational Hall conductivity

σxy = tI
(
K−1

)IJ
tJ
e2

h
. (2.28)

In the simplest case of K = k, t = 1, this is σxy = 1
k
e2

h
. The fact that the Hall

conductivity is not an integer is not a problem – eiSeff[A] does not need to be invariant

under large gauge transformations, since there are k groundstates on the torus, which

are permuted by flux-threading.

[End of Lecture 6]

So far, we’ve shown that abelian CS theory reproduces the bulk phenomenology of

some fractional quantum Hall states. Now here is a bonus: we can see what it does

when the sample has a boundary in space (which actual samples in the laboratory tend

to have).

Edge physics. Consider U(1) CS theory living on the lower-

half plane.

S =
k

4π

∫
R×LHP

a ∧ da

Let’s work in a0 = 0 gauge. We must still impose the equations of motion for a0, which

say 0 = fij = εij∂iaj. This is solved by a = ig−1dg = dφ (g = e−iφ, φ ' φ + 2π),

where d is the exterior derivative in just the spatial directions. This looks like a gauge

transformation.

Only gauge transformations that approach 1 at the boundary preserve SCS. This

implies that the would-be-gauge-parameter φ is dynamical on the boundary. (Or equiv-

alently, we must add a degree of freedom identical to φ to cancel the gauge variation

of the action.)

A good choice of boundary condition is: 0 = a− v(?2a) i.e. at = vax. The velocity

v is some non-universal UV data; it arises from a gauge invariant local boundary term,

∆S =
∫
∂LHP

kv
4π
a2
x. Plugging back into the CS action and adding the boundary term,
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we find28

SCS[a = dφ] =
k

4π

∫
dtdx

(
∂tφ∂xφ+ v (∂xφ)2) . (2.32)

Conclusion: φ is a chiral boson. kv > 0 is required for stability. The sign of k

determines the chirality.

For the case of IQHE (k = 1), the microscopic picture in

terms of free fermions is at right. For free fermions in a mag-

netic field, the velocity of the edge states is determined by

the slope of the potential which is holding the electrons to-

gether. (This can be understood by considering the motion

of a classical charged particle in a large enough magnetic

field that the inertial term can be ignored: q~v× ~B = −~∇V ,

solve for v.) It is clearly not universal information.

The Hamiltonian H depends on the boundary conditions; the Hilbert space H does

not.

I have to emphasize that a chiral theory like this cannot be realized from a local

lattice model in D = 1 + 1 dimensions. There are more powerful arguments for this

statement, but a viscerally appealing argument is simply to draw the bandstructure

arising from any lattice Hamiltonian of free fermions. Each band is periodic in mo-

mentum space. This means that an even number of bands cross the Fermi level, and

moreover that each band that crosses with positive slope must cross again with nega-

tive slope to return to its starting point. This is the essence of the Nielsen-Ninomiya

fermion doubling theorem. An analogous argument applies in any number of dimen-

sions. In fact, interactions provide a real loophole in the case of D = 3 + 1. But in

D = 1+1, a nonzero chiral central charge (which in the simple examples we’ve discussed

is just the number of right-movers minus the number of left-movers) is associated with

a gravitational anomaly. A lattice model has zero gravitational anomaly, and this is a

scale-independent quantity that must agree between the microscopic description and

the EFT. The real obstruction to making a local lattice model is the anomaly.29

28In more detail, let d̃ denote the exterior derivative in just the spatial directions.

S0[a = d̃φ] =
k

4π

∫
R×LHP

a ∧
(
dt∂t + d̃

)
a =

k

4π

∫
R×LHP

d̃φ ∧ dt∂td̃φ (2.29)

=
k

4π

∫
R×LHP

d̃
(
φ ∧ dt∂td̃φ

)
Stokes

=
k

4π

∫
R×∂LHP

φdt∂td̃φ (2.30)

=
k

4π

∫
R×∂LHP

dxdtφ∂t∂xφ
IBP
= −

∫
R×∂LHP

dxdt∂xφ∂tφ. (2.31)

29If, however, we break time translation symmetry, we can evade this outcome even in D = 1 + 1:

for example, in a floquet system, where H(t+T ) = H(t), the set of energy eigenvalues is also periodic,

45

https://arxiv.org/abs/2009.05037


In the case with general K matrix,

S =
KIJ

4π

∫
R×LHP

aI ∧ daJ

SCS[aI = dφI ] =
1

4π

∫
dtdx

(
KIJ∂tφ

I∂xφ
J + vIJ∂xφ

I∂xφ
J
)
.

(v is a positive matrix, non-universal.) This is a collection of chiral bosons. The

number of left-/right-movers is the number of positive/negative eigenvalues of K.

Abelian Chern-Simons theory of the toric code. Consider now the following

theory of two gauge fields with a mutual Chern-Simons term:

S[a, b] =
k

4π

∫
d3x (a∂b+ b∂a) .

So the K-matrix is

(
0 k

k 0

)
. The argument above suggests that a boundary of this

model should have one left-mover and one right-mover, altogether an ordinary boson

in 1 + 1d. In this case, we can add local, single-valued, gauge-invariant terms to the

boundary (such as cosφ) to kill the edge mode. Notice that unlike the generic abelian

CS theory, this system has a time-reversal symmetry acting by a↔ b.

So the TO described by this K matrix allows a gapped boundary. In fact it is an

effective field theory of a familiar system. To see this, consider the anyon types: they

can labelled by their electric charges under the two gauge fields (a, b). Because of the

CS term, the electric charge of a gets k units of magnetic flux of b attached to it, and

vice versa. The well-defined operators (ferrying these anyons around) are

WC = ei
∮
C a, VČ = ei

∮
Č b.

Because of the Aharonov-Bohm phase, if we place the curves in a fixed-time slice, they

satisfy

WCVČ = ω#Č∩CVČWC .

These are the operators that ferry the e and m particles of the Zk toric code.

As with the CS theories above, the anyons themselves are not dynamical degrees of

freedom here, they are static external objects. However, we can include their dynamics,

for example, by adding massive scalar fields that are charged under the CS gauge group.

By varying the parameters of the potential for such scalar fields, we can move around

the phase diagram. When their mass-squared passes through zero, they can condense

so we can have a band that starts below the Fermi level and ends above it, separated by 2π/T from

its starting energy.

46



and take us to a new phase. In the toric code example, condensing a field charged

under a higgses a and confines b. This takes us to the trivial phase, as condensing e

should do.

Given a K-matrix theory with equal numbers of left-movers and right-movers, when

can we gap out the boundary? The question is whether we can add local operators

that give them a mass. For a chiral mode, eiφR + h.c. = cosφR is not a local operator

because of the commutation relations of φL determined from (2.32). But cos(φR+φL)/2

is local. A keyword for the answer is ‘Lagrangian subalgebra’. Roughly, this is a subset

of the anyons with the property that they are all (self and mutual) bosons, and that

they braid nontrivially with everyone else. The idea is that we can condense these

anyons (since they are bosons), and the result, because of the nontrivial braiding, is

to confine everyone else, producing a trivial phase. If we do this condensation in the

upper half plane, the real axis is a gapped boundary between the original TO and

the trivial phase. In the case of the toric code, a + b = ∂φR, a − b = ∂φL, and both

cos
(

1
2
(φR + φL)(x)

)
= ei

∫ x a + h.c. and cos
(

1
2
(φR − φL)(x)

)
= ei

∫ x b + h.c. are local.

These two choices correspond to boundaries on the toric code where e and m are

condensed, respectively.

Thermal Hall conductivity. Above I mentioned the notion of ‘central charge’

at some point. This is a concept from 1+1d CFT, which also appears in another

universal observable. This observable is important for example when we are

studying a system that does not couple directly to electromagnetism (such as

spins) so doesn’t have a Hall conductivity. So even if there is no U(1) symmetry,

if the system is time-translation invariant, there will be energy conservation, and

we can measure an energy current. One way to make an energy current is by

applying a temperature gradient. The thermal Hall conductivity is defined as

κxy in the linear response equation

Iy = κxy ~∇xT . (2.33)

In a system with a free boson chiral edge mode like the one we found above, we

can compute this. For each edge, any excitation moves along to the right with

velocity v, so the energy current is I = vε, where ε is the energy density. In

thermal equilibrium at temperature T , for a real chiral scalar field, this is

ε(T ) =

∫ ∞
0

d̄qvqbT (vq) (2.34)

where bT (ε) ≡ 1
eε/T−1

is the Bose distribution, we used ω = vq is the dispersion

relation, and because the field is real φ−q = φ?q, the independent modes are
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labelled only by positive momenta. Therefore each edge gives

I(T ) = vε(T ) =

∫ ∞
0

d̄EE
1

eE/T − 1
= T 2 1

2π

∫ ∞
0

xdx

ex − 1
=

π

12
T 2 (2.35)

T1 T2

Now place the left and right edges at slightly different temperatures

as in the figure at left, so the total current is

Iy =
π

12

(
T 2

1 − T 2
2

)
' π

6
T∆xT. (2.36)

κxy/T = c−
π

12

k2
B

~
. (2.37)

In the last step I restored human-centric units (the ~ comes from the density of

states), and placed c− (which is 1 for this example) where it belongs in general.

To give some evidence that this is where c− belongs, let’s consider an example

of a different edge theory. Suppose instead the edge is inhabited by a chiral

majorana fermion field η, with action

S[η] =

∫
dxdt η (∂t − v∂x) η. (2.38)

The critical Ising model in D = 1+1 is described by two copies of this theory, one

right-moving and one left-moving. This chiral version arises as the edge theory

of several interesting gapped 2+1d phases, including the p + ip superconductor

(which has a free-fermion description and therefore is completely understood),

and the non-abelian phase of the Kitaev honeycomb model. I will talk about

both of those more later.

Again all the stuff just moves to the right with velocity v, and again the dispersion

relation is ω = vq, so each edge now gives

I(T ) = v

∫ ∞
0

d̄qvqfT (vq) (2.39)

where now fT (ε) ≡ 1
eε/T+1

is the Fermi distribution. Following the same steps,

I(T ) = T 2 1

2π

∫ ∞
0

xdx

ex + 1
=

π

24
T 2. (2.40)

Therefore, we again find (2.37), but with c− = 1/2, which is indeed the chiral

central charge of a single right-moving majorana mode.

More, generally the central charge is a measure of the number of degrees of

freedom. In fact, two chiral majoranas (with c− = 1
2

+ 1
2

= 1) can be related to

a single chiral boson by bosonization.
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Non-abelian CS theory. So far we’ve talked about CS theory with gauge group

U(1)n. CS theory with more general gauge groups G, such as a non-abelian Lie group,

can also arise as an EFT for states of matter. The non-abelian CS action looks like30

SCS[a] =
k

4π

∫
M

tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
where now a is a Lie-algebra-valued one-form, i.e. a =

∑dimG
A=1 aATA where TA are

generators of the Lie algebra, say in the fundamental representation.

Again invariance under large gauge transformations, g : M → G, requires that k is

quantized. The variation of the CS Lagrangian

LCS =
k

4π
tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
under a→ gag−1 − ∂gg−1 is

LCS → LCS +
k

4π
d
(
trdgg−1 ∧ a

)
+

k

12π
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The first term is a total derivative and integrates to zero on a closed manifold. Over

any closed surface, the second term integrates to the winding number of the map

g : M → G, and therefore the integral of the second term is an integer. We conclude

that eiSCS is gauge invariant if k ∈ Z.

A similar story holds for the edge modes on M = R × Σ with ∂Σ 6= 0. Again

we work in a0 = 0 gauge, and the constraint 0 = δS
δa0
∝ f = da + a ∧ a is solved by

a = g−1d̃g, where d̃ is the spatial exterior derivative. Only g that approach 1 at the

boundary of Σ are gauge redundancies, and so the boundary value of g is a physical

degree of freedom. Plugging into the action, and adding a local boundary term because

30Full disclosure: in treating a as a Lie-algebra-valued one-form I am assuming that it is a connection

on a trivial G-bundle on M . More generally, M must be covered by patches between which a is related

by a gauge transformation. One way to robustly define the CS action is to realize M = ∂N as the

boundary of some 4-manifold N and use the fact that 1
4π2 trf ∧ f = dωCS. Therefore the integral∫

N
1

8π2 trf ∧ f =
∫
M
ωCS = SCS [a] is perfectly well-defined. One shortcoming of this method is that

not every M is the boundary of some N . For example, if M has a boundary, then it cannot be the

boundary of something. From this point of view, the quantization of the level comes from demanding

that the result for SCS is independent of which 4-manifold we choose: the exp of the difference between

the result for M and M ′ is

eik(
∫
M
p1−

∫
M ′p1) = eik

∫
W
p1 (2.41)

where W = M ∩M ′ is now a 4-manifold without boundary, and p1 ≡ 1
4π2 trf ∧ f . A generalization of

flux quantization says that this integral is an integer multiple of 2π.
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you can’t stop me,

SCS[a = g−1d̃g] +

∫
∂Σ×R

kvtra2
x = ktr

(∫
∂Σ×R

(
g−1∂tgg

−1∂xg + vg−1∂xgg
−1∂xg

)
+

∫
Σ×R

1

12π
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The first two terms are just like in the abelian case. The third term is still written as a

3d integral, but it only depends on the boundary value of g. It is called a WZW term.

The resulting 1 + 1d field theory is a conformal field theory (CFT) called a chiral Gk

WZW model. The central charge for G = SU(N) at level k is

c =
k dimG

k +N
.

[End of Lecture 7]

For non-abelian G, Gk CS theory (at least for k > 1) realizes non-abelian topological

order. For example, SU(2)2 is a description of the (non-abelian) Moore-Read state that

seems to occur at filling ν = 5/2 in GaAs (see e.g. p. 45 of this useful review). In case

you missed it, the class I mentioned in the introduction concludes with a discussion of

some bulk observables in non-abelian CS theory.
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2.3 Representative wavefunctions

You’ll notice that I haven’t said very much about microscopic energetic questions.

Quantum Hall states have been realized by now in many very different materials (in

semiconductor heterojunctions, in other sandwiches made from semiconductors and

insulators and metals, in graphene), and these energetic questions are pretty different

in each case. Part of the reason to avoid that discussion is that it is different in each of

these platforms. Quantum Hall states can even be realized in lattice models without

any external magnetic field, namely Chern insulators. This just means that the hopping

matrix elements are such that the bands have nonzero Chern number. A filled band

with Chern number one has the same effect on the EM response as a filled Landau

level.

But there is a valuable perspective more microscopic than CS theory, but still more

universal than lattice details, namely representative wavefunctions. By this I mean a

groundstate wavefunction somewhere in the same phase. There is mounting evidence

that the groundstate wavefunction of a gapped phase contains all the universal data of

the phase. This is particularly valuable in the case of quantum Hall states where there

is a topological obstruction to exactly solvable models with exactly zero correlation

length (like the toric code).

How to write down a wavefunction in the right phase? One way is to make an

educated guess, which is what Laughlin did. For times when we are feeling less inspired,

here is a reliable method.

Parton construction. [I recommend Sung-Sik Lee’s TASI 2010 lectures] Here is a

strategy for writing down wavefunctions that represent a phase with topological order.

It also produces a candidate effective field theory, and has many other virtues. It is

widely regarded with suspicion.

A practical point of view on what I’m going to describe here is a way to guess

variational wavefunctions for fractionalized groundstates. A more ambitious interpre-

tation is to think of the parton construction as a low-energy duality between a model of

interacting electrons (or spins or bosons or ...) and a gauge theory of (candidate) ‘partons’

or ‘slave particles’. Like any low-energy duality, it is a guess for useful low-energy de-

grees of freedom. The goal is to describe states in roughly the same Hilbert space31 as

the original model, in terms of other (hopefully better!) variables. The appearance of

gauge fields (perhaps only discrete ones) is an inevitable side effect when there is frac-

31I don’t mean exactly the same Hilbert space. The construction takes advantage of our ability to

add in ancillary, decoupled, inert bits in changing our representative of a phase. Sometimes condensed

matter physicists use the phrase “the same Hilbert space” to mean up to this equivalence, and it is

in this sense that we mean it here.
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tionalization of quantum numbers (spin-charge separation, fractional charge ...) in D > 1+1.

I will describe the construction in two steps. For definiteness, let’s focus on the

following example. Suppose c to be the annihilation operator for a (spinless) electron.

Suppose we are interested in the (difficult) model with

H =
∑
〈ij〉

(
tijc
†
icj + h.c.

)
+
∑
〈ij〉

V ninj (2.42)

Comments:

1. We’re going to talk about spinless electrons. This can be reasonable in a big

magnetic field, which implies a big Zeeman splitting, so that the wrong-pointing

spin states are high energy states we can ignore. (However, see the section of

Girvin’s review about QH ferromagnetism – the Zeeman splitting in GaAs is not

that big.)

2. We can suppose that the hopping terms tij include some lattice version of the

magnetic field, so tij = teiAij . If you like, you could think of my lattice model

here as just a discretization of electrons in the continuum in a magnetic field.

3. This kind of ‘Hubbard-V interaction’ is the shortest range interaction we can have

for spinless fermions (since the density ni = c†ici is zero or one and so satisfies

n2
i = ni).

4. To fully specify the system (2.42), we need to specify the filling – how many

electrons are there per site. If the electrons fully fill some bands and V = 0,

the system is an insulator; since there’s a gap we expect this fact to persist even

for nonzero V . If the filled bands have nonzero Chern number, this is a Chern

insulator, and there is a quantized Hall response. It is just a lattice version of

the IQHE.

5. If we partially fill some Chern bands, without V the system would be a metal.

Interactions have a chance to change that. Indeed such a model can produce

fractional quantum Hall groundstates. On the lattice, such a thing is called a

fractional Chern insulator; as of just recently, these exist in various twisted bilayer

systems.

Parton construction: step 1 of 2 (Kinematics)

Relabel states of the many-body H with new, auxiliary variables.

For example, a parton ansatz appropriate to the ν = 1
3

Laughlin FQH state is

e.g . c = f1f2f3 =
1

3!
εαβγfαfβfγ
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fs are complex fermion annihilation operators (they must be fermionic in order that

three of them make up a grassmann operator).

Not all states made by fs are in H. There is a redundancy: if we change

f1 → eiϕ(x)f1, f2 → e−iϕ(x)f2, f3 → f3, or f1 → f1, f2 → eiϕ(x)f2, f3 → e−iϕ(x)f3 ,

(2.43)

then the physical variable c is unchanged. In fact, there is an SU(3) redundancy

fα → Uβ
αfβ, c → detUc (of which (2.43) is a Cartan (maximal abelian) subgroup).

We are making the ansatz that c is a baryon.

In any state in H, the number of actual electrons is equal to the number of partons

of each color, since c† creates one of each. The Lagrange multipliers imposing

f †1f1 = f †2f2 = c†c = number of e−; f †2f2 = f †3f3 (2.44)

are the time components a0 of a gauge field.

To write an action for the fs that is covariant under this redundancy, introduce the

spatial components of the gauge field, ai. Perhaps you don’t like this idea since it seems

like we added degrees of freedom. Alternatively, we can think of it as arising from e−

bilinears, in decoupling the c†xcxc
†
x+icx+i interaction by the Hubbard-Stratonovich trick.

What I mean by this is:

eiV
∫
dtni(t)nj(t) = eiV

∫
dtc†i (t)ci(t)c

†
j(t)cj(t)

(2.44)
= ei

∫
dtV

9

∑
α f
†
iα(t)fiα(t)

∑
β f
†
jβ(t)fjβ(t)

=

∫
[
∏
α,β

Dηαβij ]e
i
∫
dt
∑
αβ

(
9|ηαβ
ij
|2

V
+f†iα(t)fjβ(t)ηαβij +h.c.

)
(2.45)

where η is a new complex (auxiliary) bosonic field on each link. Now let ηij = |ηij|eiaij
(for each αβ) and ignore the (massive) fluctuations of the magnitude |ηij| = tij. Voilà

the gauge field, and the parton kinetic term.

How does the practical viewpoint of constructing possible wavefunctions arise?

Guess weakly interacting partons: Hpartons = −
∑

ij tijf
†
i e
iaijfj + h.c. Then fill bands

of f and project onto the gauge invariant subspace.

But what about the fluctuations of a (i.e. we still have to do the a integral)?

Microscopically, a has no kinetic term; in that sense the partons are surely strongly

coupled and confined at short distances (of course they are – the system is made of

electrons if you look closely enough). a only gets a kinetic term from the parton

fluctuations, by processes like this: . The hope is that with enough
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other partons around, they can be shared and juggled amongst the electrons, so that

which parton is in which electron fluctuates.

Parton construction: step 2 of 2 (Dynamics)

Such a rewrite is always possible, and there are many possibilities. The default

result of such a rewriting is that the gauge theory also confines the partons at low

energies. By a confining state, I mean one in which the energy cost to separate colorful

partons is much larger than other scales in the problem, namely, the gap, or the inverse

lattice spacing, or energies associated with chemistry (gasp). A picture of a confined

state might be something like this:

In this picture, each of the sites has one of each color of parton localized to it – this

is just an electron. This means there is no fractionalization and no topological order

and usually leads us back to the microscopic description in terms of the microscopic

degrees of freedom. (It doesn’t mean the parton description is useless however; see §4).

Pure 2+1d gauge theory (without a CS term) likes to do this. Recall that the

Maxwell or Yang-Mills kinetic term is an irrelevant operator according to naive dimen-

sional analysis, if we treat the gauge field as a connection (i.e. something we can add

to a spatial derivative). This is true even of (compact) U(1) gauge theory: In terms

of the dual photon σ, defined by ∂µσ ≡ 1
2π
εµνρ∂νaρ, the gas of monopole instantons

produces an effective potential of the form

Veff = Λ3eiσ + h.c. = Λ3 cosσ.

Expanding around the minimum of this potential, we find a mass for σ, and hence for

the photon aµ. The statement that abelian gauge theory with compact gauge group in

D = 2 + 1 likes to confine is due to Polyakov32.

32See section 7.2 of these notes for more details about this from the point of view of a regularization

on the lattice.
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Let me emphasize again that it’s deconfined

states of parton gauge theories that are most in-

teresting here. So we are looking for gauge the-

ories that behave oppositely to QCD, really like

anti-QCD, where the partons are deconfined be-

low the confinement scale Λanti-QCD, as in the fig-

ure at right. Interesting states we can make this

way correspond to interesting phases of gauge

theory, a worthy subject.

Our discussion in this section has followed

this diagram starting from the highest energies

(chemistry!) and guessing the lower-energy de-

grees of freedom that result from the interactions

of the constituents. (This dialectic between high-

energy physics and condensed matter physics,

of GUT and anti-GUT, is described vividly by

Volovik.)

Like gaplessness, deconfinement requires an explanation. Known exceptions which

allow for this:

• enough dimensions that the Maxwell term becomes marginal or relevant and we

can have a Coulomb phase.

• partial Higgsing to Zn. Condensing electric charge makes monopoles heavy.

• lots of charged degrees of freedom at low energy. One way to describe their

effects is that they produce zeromodes on the monopole configuration, and the

monopoles only contribute to higher-dimension operators involving insertions of

the light fields. (Interesting constraints on how many modes is enough, from

strong-subadditivity of the entanglement entropy, were derived here.) Partons

that are gapless at points in k-space inhabit phases called algebraic (something)

liquids; the ‘something’ is whatever visible quantum numbers they carry, e.g. spin;

if they happened in the model (2.42), it would be charge. If the partons form

a Fermi surface, that is certainly enough (Sung-Sik Lee reviews his proof of this

in the notes linked above). This is a kind of spin liquid which may have been

observed in various materials in the past decade or so.

• in D = 2 + 1: the Chern-Simons term a∧ da is marginal, and can gap out gauge

dynamics, as we saw in §2.2, producing a stable, deconfined, topological phase.

Mutual CS terms can accomplish the same goal.
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If I’ve forgotten some please tell me.

Parton construction of Laughlin state. Let’s pursue the Laughlin example a

bit further, but let’s retreat to the continuum. So consider a pile of electrons in 2+1

dimensions, on a space of area A with periodic boundary conditions, in large uniform

B. And let’s put only enough electrons to fill a third of the lowest Landau level. That

is, the number of electrons per lowest Landau level state is

1

3
= νe ≡

Ne

NΦ(e)
=

Ne

eBA/(hc)
.

The fact that this band is partially filled means that if the electrons are free, the system

is gapless. But this degeneracy is fragile. Any interaction between the electrons will

split the degeneracy somehow.

If, on the other hand, the electron fractionalizes as c = f1f2f3, then fα carries

charge 1/333. Consider then each fα in the same external field B, and suppose the

partons are free (as a first approximation). Their filling fraction is:

νf =
Nf

NΦ(e/3)
=

Ne

NΦ(e/3)
= 3νe = 1 .

The wonderful thing about this guess is that the partons can now form a gapped

state: that is, we can pretend they are free and fill their bands, so that they make a band

insulator. However, because they are filling a Landau level, this band insulator is an

integer quantum Hall (IQH) state. Then, integrating out the gapped partons produces

a (nonsingular but nontrivial) contribution to the effective action for the gauge field:

the IQH nature of the bands means that there is a Hall response for any gauge fields to

which they are coupled, just as we’ve discussed above. This is encapsulated precisely

by the CS term! 34

33Actually, it is completely arbitrary how we divide up the electron charge amongst the partons;

different choices differ by relabelings of the gauge group which cannot affect the physics.
34 We showed that QHE means a CS term earlier. The massive Dirac fermion in 2+1 dimensions also

has a Hall response. The mass term mψ̄ψ breaks parity in D = 2 + 1. This slightly-more-microscopic

calculation can be done in just the same manner as the path integral calculation of the chiral anomaly,

and the εµνρ arises for the same reason:

log

∫
DψDψ† e

−
∫
d3xψ̄

(
i /D−m

)
ψ

= log det (i /D −m) = Tr log (i /D −m)

≡ Tr log (1− i /D/m) e−2/M2

+ cst 2 ≡ (i /D)
2

= −(∂ + a)2 − 1

2
Σµνf

µν

= −Tr

∞∑
n=1

1

n

(
i /D

m

)n
e−2/M2

.

where Σµν ≡ 1
2 [γµ, γν ] is the rotation generator. Now expand the regulator exponential as well and
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Here is the simplest route to the low-energy theory35. We saw above that a useful

description of the IQHE is in terms of a dynamical U(1) gauge field in terms of which

the current describing the dofs forming the IQH state takes the form j = 1
2π
ε∂a, and

the Lagrangian has a term ada
4π

. So let’s introduce such a gauge field for each of the

three species of parton:

j(α)µ =
1

2π
εµνρ∂νb

(α)
ρ .

We also have gauge fields associated with the parton gauge redundancy (2.43)36, that

I’ll call a1 and a2. The full effective action is then

4πL =
∑
α

bαdbα + 2A
∑
α

qαdb
α + 2a1(db1 − db2) + 2a2(db2 − db3) (2.46)

where qα are the electric charges of the partons, which satisfy
∑

α qα = 1. a1,2 are just

Lagrange multipliers setting b1 = b2 and b2 = b3. Setting a = b1 = b2 = b3, then, the

action becomes

4πL = 3ada+ 2Ada
∑
α

qα = 3ada+ 2Ada

which is the effective action we advertised above.

Hence we arrive at a CS theory, like (2.14), for some particular choice of K, de-

termined by the QH response of the partons, i.e. by their charges-squared times the

Chern numbers of their bands.

The Hall conductivity is just sums of the contributions of the partons:

σxy =
(e/3)2

h
× 3 =

1

3
e2/h.

The parton groundstate is |Φmf〉 = P |free parton state〉, where P is the projection

onto the gauge invariant subspace, and the free parton state is obtained just by filling

the lowest Landau levels of the partons. The electron wavefunction is

Ψ(r) = 〈0|
∏
i

c(ri) |Φmf〉 =


N∏
i<j

zije
−
∑N
i |zi|2/(4`2B(e/3))

︸ ︷︷ ︸
ν = 1 slater det of charge 1/3 fermions


3

=
∏
i<j

z3
ije
−
∑N
i |zi|2/(4`2B)

in D = 3, the term that survives the trace over Dirac matrices is

Tr
iaργ

ρ

m

1

M2

(
(∂ + a)

2
+

1

2
Σµνf

µν

)
= sign(m) trγρΣµν︸ ︷︷ ︸

=ερµν

∫
d3x

1

2
iaρfµν .

Please see my QFT notes from s22 if that was too fast.
35One place in the literature where it appears is section IV of this paper.
36You can ask: what happened to the rest of the SU(3)? One possible answer is that it is sponta-

neously broken down to this U(1)2 subgroup in the state we are describing.
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where zij ≡ zi − zj. This is the Laughlin wavefunction. (Note that `2
B(e) = ~

eB
, so

`2
B(e/3) = 3`2

B.)

Another route to the low-energy theory is as follows. Just couple the partons to an

SU(3) gauge field a and

integrate out the gapped partons:

∫
[Df ] ei

∫
L(f,a) = eikCS(a)+···

The resulting low-energy effective field theory of a is SU(3)1 CS theory (with gapped

fermionic quasiparticles). It’s a non-trivial fact that SU(3)1 CS theory with gapped

fermionic quasiparticles is dual to the U(1)3 CS theory that we found earlier – they

have the same groundstate degeneracy and anyon types and bulk response theory. I

hope to explain more about this duality after we speak about invertible phases, since

the derivation essentially involves subtracting an invertible phase from the BHS.

The Laughlin quasiparticle is the parton f with a Wilson line to make it gauge

invariant.

D = 2 + 1 is kind of cheating from the point of view of emergent gauge fields.

This is because the Chern-Simons term is a self-coupling of gauge fields that gives the

photon a mass without the addition of degrees of freedom. We have seen above (in the

toric code example) that this does not necessarily require breaking parity symmetry.

For this reason partons work extremely well to describe QH physics, but they are

also useful for other kinds of quantum matter with strong correlations. For more about

parton gauge theory I heartily recommend Sung-Sik Lee’s TASI 2010 lectures. In his

lectures 2 and 3, he applies this method to bosons and to spins and provides a great

deal of insight.

For a long time I thought that gauge fields were only interesting for condensed

matter physics when deconfinement could be somehow achieved, i.e., when there is

topological order. We’ll see examples in §4 where even confined emergent gauge fields

can do something interesting!

Attempted parable. The parton construction is a method for ‘solving’ non-

holonomic constraints, like inequalities. In what sense were we solving such a constraint

above? Suppose that the nearest-neighbor repulsion V is the biggest scale in the

problem. Then we want the number of electrons on each pair of neighboring sites to

be ≤ 1.

Here is a much simpler example: I can solve the condition y > 0 by writing y = x2.

So we can do a 0-dimensional path integral (integral) over y > 0 in terms of an
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unconstrained variable x by writing∫ ∞
0

dy e−S(y) =
1

2

∫ ∞
−∞

dx elog |2x|−S(x2).

In this model, the operation x 7→ −x is a gauge redundancy. In this case, it is a finite

dimensional gauge group and we account for it by the factor of 1
2

out front.

The extra log |2x| term in the action from the Jacobian is like a contribution from

the gauge fluctuations. If I were clever enough I would illustrate deconfinement here,

but I guess that isn’t going to happen in zero dimensions.

[End of Lecture 8]

The parton construction makes possible

• new mean field ansatze,

• candidate many-body groundstate wavefunctions,

• good guesses for low-energy effective theory,

• accounting of topological ground-state degeneracy and edge states,

• an understanding of transitions to nearby states. (I’ll give an example below.)

It has the following difficulties:

• making contact with microscopic description,

• its use sometimes requires deciding the IR fate of strongly coupled gauge theories.

Plasma analogy. [For more on this subject and the next please see Dan Arovas’

QHE notes.] So the Laughlin wavefunction at filling ν = 1
k

is

Ψk(z) =
∏
i<j

zkije
−
∑N
i |zi|2/(4`2B) . (2.47)

For even k this is a fermionic wavefunction, and for odd k this is a bosonic wavefunction.

It has a number of very interesting properties. One is that correlation functions of

operators diagonal in position space can be computed by a certain auxiliary classical

system of N particles in 2d. The N -particle probability density, which determines all

such correlations is:

|Ψk(z)|2 = e−βh(~r1···~rN ), with β = 1/k (2.48)

and

h(~r1 · · ·~rN) = −2k2
∑
i<j

log |ri − rj +
k

2`2
B

∑
i

r2
i . (2.49)

59

https://courses.physics.ucsd.edu/2019/Spring/physics230/LECTURES/QHE.pdf
https://courses.physics.ucsd.edu/2019/Spring/physics230/LECTURES/QHE.pdf


This is the Boltzmann distribution for a two-dimensional one-component plasma: N

point charges of charge
√

2k interacting via the 2d Coulomb potential φ that satisfies

~∇2φ(r) = 2πδ2(r) =⇒ φ(r) = − log r (2.50)

with a uniform background charge

ρ = − 1√
2π`2

B

=⇒ φBG =
kr2

2`2
B

. (2.51)

To minimize energy the charges form a unifrom density (at least at large enough

β), to cancel out the background charge nk
√

2 + ρ = 0, so that n = 1
2πk`2B

. With N

particles, they fit in a disk of radius R with πR2n = N , so R =
√

2kN`B.

An important such observable is the pair density distribution:

ng(r) ≡ 1

N

〈
N∑
i 6=j

δ2(~r + ~rj − ~ri)

〉
. (2.52)

It is proportional to the probability of finding two particles separated by the vector ~r.

g(r) determines the static structure factor (measurable in scattering experiments) by

ŝ(k) = 1 + n

∫
d2r (g(r)− 1) e−i

~k·~r. (2.53)

One funny thing is that at some large value of β = 1/k, this plasma crystal-

lizes! That is, a delta-function peak forms in ŝ(k). This is a result of Monte Carlo

simulations (and the critical value of k ∼ 70). This is a completely different phe-

nomenon from the energetic competition between the Laughlin state and a possible

Wigner crystal state of the electrons – it says that the Laughlin wavefunction itself

exhibits translation-symmetry breaking. Note that this shows that topological order

and ordinary symmetry breaking are not necessarily inimical.

Fermi statistics demands that g(r) vanish as r → 0. But the Laughlin wavefunction

does even better:

gLaughlin(r)
r→0
= ck

(
r

`B

)2k

= ck+1

(
r

`B

)2(k+1)

+ · · · . (2.54)

Parent Hamiltonians. The behavior of the pair correlation function (2.54) in the

Laughlin states can be used to identify a family of exact parent Hamiltonians for it, that

is, nice local Hamiltonians with (very) short-ranged interactions whose groundstate
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is the Laughlin state. They take the uncontroversial form H = Hkin + Hint, where

Hkin = 1
2m

∫
c†(~∇+ A)2c is the usual kinetic term and

Hint =

∫
d2r1d

2r2n(r1)n(r2)v(|~r1 − ~r2|). (2.55)

In this expression I emphasize that the interaction potential is central, i.e.v(r) = v(|r|).
This means that its Fourier transform is of the form

v̂(k) =

∫
d2rv(r)e−i

~k·~r = 2π

∫ ∞
0

drrv(r)J0(k) =
∞∑
j=0

Aj(−k2`2
B)j. (2.56)

Therefore back in real space

v(r) =
∞∑
j=0

Aj(`
2
B
~∇2)jδ2(r). (2.57)

For a state made only from lowest Landau-level orbitals, the kinetic energy doesn’t

contribute. The interaction energy of any state is

Eint/N = 〈Ψ|Hint |Ψ〉 =
n

2

∫
d2rv(r)g(r) =

n

2

∞∑
j=0

Aj(`
2
B
~∇2)jg(r)|r=0. (2.58)

For fermions, Aj doesn’t contribute. For the Laughlin state at filling ν = 1/k, the Aj
with j < k don’t contribute. Thus, for any Hamiltonian with A1, · · ·Ak−1 6= 0, but

Ak = Ak+1 = · · · = 0, Ψk has Eint = 0 exactly. But we can choose the nonzero Aj so

that Hint > 0, and thus Ψk is a groundstate.

Furthermore, we can argue that it’s the unique groundstate (on the plane or sphere),

the only homogeneous wavefunction at ν = 1/k with Eint = 0. The idea is that any such

state must vanish at least as fast as zkij as any two particles approach, and therefore must

have a factor of V (z)k, where V (z) ≡
∏

i<j zij is the vandermonde determinant. But

including any higher-degree polynomial Ψ = e
− |z|

2

4`2
B V (z)kP̃ (z) will dilute the particles

below ν = 1/k. (The filling is ν = N(N−1)
J

, where J is the total angular momentum,

which for a holomorphic wavefunction is the degree in λ under zi → λzi. A single

power of V (z) has degree 1
2
N(N − 1)/2. )

One can interpolate at fixed ν between the Hexact described above and the actual

Coulomb interaction Hamiltonian governing particles in a 2DEG made from an insu-

lating heterojunction. The claim is that there is no phase transition.

Lowest-Landau-Level Projection. To actually do this it is best to project into

the LLL. Let me remind you what this means. Recall that in first-quantized notation,
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in a uniform magnetic field ~B = −Bẑ,

Hkin =
1

2m
Π2 = ~ωc(a†a+

1

2
). (2.59)

where

~Π ≡ ~p+
e

c
~A, Π ≡ Πx + iΠy = − i

√
2~
`B

a

~κ ≡ ~p+
e

c
~A− e

c
~B × ~r κ ≡ κx + iκy = i

√
2~
`B

b†. (2.60)

Here [b, b†] = 1 = [a, a†], [a, b] = 0 = [a, b†]. The kinetic energy depends only on

the Landau level quantum number, and is independent of the so-called ‘guiding center’

operators b. For future reference, the complex coordinates are related to these operators

by

z =
i`2
B

~
(Π− κ) = 2`B(a+ b†), z† = 2`B(a† + b) . (2.61)

The derivatives are

∂ =
1√
8`B

(b− a†)∂̄ =
1√
8`B

(a− b†). (2.62)

The LLL projection O → POP ≡ OL,P ≡ |0〉〈0|, a |0〉 = 0. The resulting operator

LL is still an operator acting on the guiding center dofs. Although [x̂, ŷ] = 0 in the full

Hilbert space,

[x̂L, ŷL] = i`2
B . (2.63)

A better way to think about this projection is just to expand the full electron

annihilation operator

cx =
∑
nk

Φnk(x)cnk, PcxP =
∑
k

Φ0k(x)c0k. (2.64)

Recall that the LLL wavefunctions are holomorphic functions times a gaussian

factor. In the LLL, the operator z̄i can be replaced by 2`2
B∂zi .

2.4 Composite fermions and hierarchy states

The following line of thought, which allows us to understand other abelian FQH that

actually occur (at fractions besides ν = 1
m

) can be regarded as an important special

case of the parton construction.

Consider what happens as we move away from the center of the plateau where the

filling fraction is exactly 1
m

, say by varying the external magnetic field as in the famous
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plot. The lowest-energy way to add charge is to create some charge-e/m quasiparticles,

so when we change the filling by a finite amount, we produce some nonzero density of

these objects, still in a large magnetic field. What do they do? They interact with each

other somehow. If they are localized by disorder (i.e. form an Anderson insulator) or

form a Wigner crystal, the Hall conductivity stays at the plateau value. Indeed at the

lowest densities, charged particles with Coulomb interactions do form a Wigner crystal.

But at higher densities, what’s to stop them from forming their own FQH state?

There are several nice ways to describe this. One is called composite fermions,

where the idea is to think of the factors in the Laughlin wavefunction zmij as zijz
m−1
ij ,

one IQH wavefunction, and one boson ν = 1
m−1

(bosonic) Laughlin wavefunction – of

the same variables. Fermi statistics of the electron require Ψ ∝ zij, but the extra m−1

powers are something else. Regard the particle whose wavefunction this is as a fermion

(the one in the IQH state) with m − 1 units of some kind of flux attached (we’ll see

precisely what flux in a moment). Such a particle experiences a reduced magnetic field:

B? = B − (m− 1)ρΦ0. (2.65)

Since the number of such ‘composite fermions’ is the same as the number of electrons,

we have (if B? > 0)

ρ =
νB

Φ0

=
ν?B?

Φ0

(2.66)

and hence the actual filling ν is related to the filling of composite fermions ν? by

ν =
ν?

(m− 1)ν? + 1
. (2.67)

If we let the composite fermions fill ν? ∈ Z Landau levels (or fill bands with total Chern

number ν?), we get a gapped state with Hall conductivity given by (2.67). For m = 3,

and ν? = 1, 2, 3 · · · this is

ν =
ν?

2ν? + 1
=

1

3
,
2

5
,
3

7
,
4

9
· · · . (2.68)

You can see these plateaux in the famous plot. This picture suggests a very successful

trial wavefunction for these fillings37, namely:

Ψ̃ν(z) = PLLL
∏
i<j

z2
ijΨ̃ν?(z, z̄). (2.69)

Here PLLL is the projector to the lowest Landau level: If we are filling multiple Landau

levels, Ψν?>1 is no longer holomorphic; to make wavefunctions for electrons at ν < 1,

37Define Ψ ≡ Ψ̃e
−
∑
i
|zi|

2

4`2
B so we don’t have to write the annoying gaussian factor.
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which we expect to be made just from LLL orbitals, we project this thing into the LLL

by the replacement z̄i 7→ 2`2
B∂zi .

Note that there are also such ‘hierarchy states’ with fillings larger than 1
m

, which

means B? < 0. In that case (2.66) is replaced by

ρ =
νB

Φ0

= −ν
?B?

Φ0

(2.70)

so

ν =
ν?

2ν? − 1
= 1,

2

3
,
3

5
,
4

7
,
5

9
· · · . (2.71)

If we plot the fillings we achieve by this con-

struction (2.68) and (2.71) as a function of

ν?, we get the following plot. This will be

useful later. (Notice that if instead we took

m − 1 to be some other even number as

our starting point, the asymptote would be

ν = 1
m−1

instead.)

Now here is an explanation of the above numerology in terms of partons. We make

the following parton ansatz

c = fb. (2.72)

c is the electron destruction operator, and f and b are fermionic and bosonic partons

respectively. This fractionalization leads to a U(1) gauge field which let’s call a1, under

which f and b have charges 1 and −1. What are the charges of f and b under the

external A? I claim that it does not matter, as long as they add up to one. Now (here

we make a choice), let’s put b into a ν = 1/2 Laughlin state. One way to do that is

to write b = d1d2 in terms of two more fermionic partons, introducing a second gauge

field a2 under which d1,2 have opposite charge (note that it again doesn’t matter how

we distribute the a1 charge between d1 and d2), and let each of d1 and d2 fill a Chern

band. The full table of charges is

A a1 a2

d1 q1 0 1

d2 q2 1 −1

f qf −1 0

Now let’s integrate out d1 and d2. In general, integrating out a field di with charges qαi
under gauge field aα filling chern bands with total chern number ci leads to an effective
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Lagrangian

Li =
ci
4π

∑
αβ

(qαi aα) d
(
qβi aβ

)
. (2.73)

A useful mnemonic is the following diagram:

α β
i

qαi qβi

For convenience of writing I’ll call a0 ≡ A, so the couplings to the external gauge field

are included in (2.73). We ignore any other interactions between the partons, so the

contributions of multiple fields just add. So integrating out d1,2 leaves us with

Leff =
c1

4π
(a2 + q1A) d (a2 + q1A) +

c2

4π
(a1 − a2 + q2A) d (a1 − a2 + q2A) + L(f, a)

(2.74)

We can think of these CS terms as attaching flux to the remaining parton f , which is

the composite fermion.

Now we can decide what to do with f ; depending on what we do, we’ll find different

states, with different Hall response. If we let f fill Chern bands with total Chern number

ν?, we can integrate out f , too, in the same way, and get Leff =
∑

i Li with Li as in

(2.73). If we set ν? = 1 we reproduce exactly our earlier construction of the Laughlin

state. To find the general Hall response, we can just solve the equations of motion for

a1,2; these are linear equations that determine a1,2 in terms of A. Plugging back into

(2.74) then gives an action of the form L = ν
4π
AdA with, setting c1 = c2 = c38,

ν =
cν?

c+ 2ν?
. (2.75)

If I set c = 1, this is exactly (2.68). And the parton trial wavefunction is just (2.69).

Hierarchy and K-matrices. There is another way to construct the hierarchy, by

combining the logic with which we began §2.2 with the picture with which we began our

discussion of the hierarchy states. So we’ve argued that the EFT in terms of CS gauge

fields is an inevitable consequence of U(1) symmetry, a gap, and broken time-reversal

symmetry. That’s the same situation we’re in when we add a density of quasiparticles

to move away from the center of the plateau (assuming we make a gapped state). So

the same logic suggests that we write also the quasiparticle current

jµqp =
1

2π
εµνρ∂ν ãρ (2.76)

38In this calculation, it is an extremely useful check to leave the electric charges of the partons

arbitrary, and make sure that the answers only depend on the sum of their charges, which is fixed by

the charge of the electron.
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in terms of a (new) CS gauge field! You can’t stop me. The minimal-coupling term

aµj
µ
qp becomes a mixed CS term. The full action (epsilon tensors are implicit) is

4πL = kada+ 2Ada+ 2adã+ k̃ãdã+ · · · ,

where I’ve added a CS term to describe the dynamics of the quasiparticles, by the

same logic as before. This is of the form (2.14) with a 2 × 2 K-matrix, K =

(
k 1

1 k̃

)
with charge vector t = (1, 0). If we integrate out ã and a in this action, we’ll find Hall

conductivity

ν =
1

k − 1
k̃

.

If k̃ = 2, we reproduce our previous hierarachy states. These FQH states of composite

fermions are observed here. This CS description determines the groundstate degeneracy

(to be | detK|g on a genus-g surface) and the charges and statistics of the quasiparticle

excitations above this state: minimally couple particles to a and ã. The quasiparticle

charges that one computes this way are observed experimentally, e.g. at ν = 2
5
.39

Exercise: explain in this language how to get the states with filling larger than a

half that we described earlier.

Now, why should we stop here? Moving away from the middle of the plateau of one

of these states, there is a density of those quasiparticles whose charges I just mentioned.

Why can’t they, too, form a QH state? Then we would write their current in terms of

yet a third CS gauge field, and we would arrive at a description with a 3×3 K-matrix,

and a Hall conductivity that was a continued fraction with a third level. You can also

see these states in clean samples.

[End of Lecture 9]

This construction gives K-matrices with integers on the diagonal and ones on the

next-to-diagonal. The K-matrix K =

(
m1 n

n m2

)
and charge vector t = (1, 1) also de-

scribes states that exist (named after Halperin), and whose filling fraction, quasiparticle

data and GSD you can now compute.

We can relate theories with different K-matrices by a relabelling of fields, aI →
W I
Ja

J . But in order to preserve the flux quantization, the matrix W must have

| detW | = 1, that is W ∈ GL(n,Z). Thie resulting equivalence relation acts by

KIJ → W I
KK

KLW J
L , tI → W I

J t
J . (2.77)

39A nice resource for the literature on experimental studies of FQHE up to 2004 is the slides of

Willett here.
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Quantum Hall Metal. Now comes some real magic: look again at the limit as

ν? → ∞ of the plot above. What happens when ν = 1
2

(or more generally ν = 1
m−1

)

in the composite fermion construction? Look at (2.65): when ν = 1
m−1

, the composite

fermion sees no magnetic field at all! This is despite the fact that half-filling happens

(for realistic electron densities in a 2DEG) at enormous magnetic fields like 25 Tesla.

This suggests that in our parton ansatz (2.72) the composite fermion f can just fill a

Fermi sea, and would move in straight lines in response to an external electric field.

This would be a gapless, metallic state. And indeed that is what is seen near ν = 1
2
!

A trial wavefunction for this amazing state is then just

Ψ̃(z) = PLLL
∏
i<j

z2
ij det

ij
eiki·rj (2.78)

where the {ki} label the N lowest energy modes. I think this wavefunction was first

written down by Read and Rezayi, but Halperin, Lee and Read explained a lot of the

physics, so I call it the HLR state. A similar story occurs (in experiments as well) at

other fillings of the form ν = 1
m−1

for m an odd number.

But there’s more: let’s start at the HLR state at ν = 1
2

and vary the magnetic field

(at fixed electron density) away from the special value where the composite fermions see

no field B = Bν= 1
2
+δB. What happens when we subject a Fermi surface to a magnetic

field? We get quantum oscillations: various quantities, including the conductivity, are

periodic with period 1/δB. But this periodic structure is exactly where the hierarchy

plateaux appear! (That is: if 1
δB

= ± ν?

ρΦ0
for some integer ν?, the actual filling fraction

is ν = ν?

2ν?±1
.) This means we can regard all of the hierarchy states, including the

original Laughlin states, as extreme manifestations of quantum oscillations.

Notice that the composite fermions at the Fermi surface still interact with a Chern-

Simons gauge field. This is a non-Fermi liquid: a metallic system that is not described

by ordinary Fermi liquid theory.

Incompressible states at even denominators. Finally, one thing that fermions

at a Fermi surface like to do is pair up and superconduct. What happens if the

composite fermions in the HLR state form a superconductor? Well, by Fermi statistics,

it has to be a p-wave superconductor because the composite fermions are spinless (we’re

assuming the electrons are completely spin-polarized). If they form a p+ ip (nodeless)

superconductor, the projection of the BCS wavefunction is the Moore-Read state, which

is a non-abelian topological order. (Perhaps more on this wavefunction later. This is

not how it is was first discovered.) Whether or not the composite fermions pair up

depends on the consequences of the CS interactions, and on microscopic details. (For

an analysis of this drama, see here.) In the half-filled lowest Landau level, we see a

metallic state, but in the half-filled third Landau level (i.e. at ν = 5
2
), there is indeed
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an incompressible state, which could be the Moore-Read state. (At ν = 3
2
, 7

2
, one finds

instead states that break translation symmetry – stripes. For why this happens, see

Misha Fogler’s article here.)

Recently there has been some further development in our understanding of what

happens near ν = 1
2
. The state (2.78) makes a distinction between a half-full and a

half-empty Landau level – it is not symmetric under the interchange of particles and

holes. But experiments show that the physics is particle-hole invariant. Son suggested

a way to write down a particle-hole symmetric state by starting with Dirac composite

fermions, rather than the non-relativistic ones that I’ve been talking about. This line

of inquiry has also had some important consequences for our understanding of the

gapped and likely non-abelian state at ν = 5
2
. Recent measurements (of thermal Hall

conductivity (which counts the number of edge modes, including neutral ones) and of

interfaces with other states) favor a particle-hole symmetric version of the Moore-Read

state (called the PH-Pfaffian).

Transitions to neighboring phases. What happens if the Chern numbers of the

bands occupied by the partons d1,2 are not both 1 (let’s call it (c1, c2) = (1, 1))?

It is not hard to describe a transition where Chern numbers

change: just vary the bandstructure until the bands touch

at a Dirac point. Moving past that point, the two touch-

ing bands exchange Chern numbers. (I like to think of it

like a crossover event during meiosis. The pictures are very

similar.) If one is filled and one is empty, this will change

the resulting contribution to the Hall response. For example,

imagine that in the figures at right the blue band is filled.

And we see that a theory of the transition is a Dirac fermion

coupled to Chern-Simons gauge fields.

Consider just the theory of a boson b, with the ansatz b = d1d2, where d1 and d2

fill Chern bands with Chern numbers (c1, c2). The effective Lagrangian for the gauge

field a1 gluing them together is

L =
c1

4π
(a1 + q1A) d (a1 + q1A) +

c2

4π
(−a1 + q2A) d (−a1 + q2A) . (2.79)

Integrating out a1 gives Hall response

νb =
c1c2

c1 + c2

. (2.80)
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Several cases are interesting. If (c1, c2) = (1, 0), the calculation above gives ν = 0, no

Hall response. But the state of the boson b = d1d2 is still an insulator, there is still an

energy gap. This is a (weird!) description of a featureless Mott insulator.

Another very interesting case is when (c1, c2) = (1,−1), in which case (2.80) blows

up. This is a signal that the theory is actually gapless. In fact it is a dual description of

the superfluid phase of the boson. To see this, go back to (2.79). When c1 = −c2 = 1,

it reduces to

L =
1

2π
adA+ f 2 (2.81)

which says that there is no CS term for a, and I’ve added back the Maxwell term,

since it’s now the leading term governing the dynamics of a. Earlier I said that pure

compact U(1) gauge theory in D = 2 + 1 confines because of monopole instantons.

But the first term in (2.81) says that magnetic flux of a carries charge under the U(1)

global symmetry. This means the operator eiσ is not U(1) symmetric (σ shifts) and

can’t be added to the action. This describes a gapless theory, where the photon is the

goldstone boson, ∂a = ε∂σ, for spontaneously breaking the U(1) symmetry.40

In the presence of some lattice symmetry (like parity, k →
−k) that forces two band-touching points at the same point

in the phase diagram, it can force the Chern number of the

filled band to change from c = −1 to c = 1. If this happens

to d1 (fixing c2 = 1) we have a direct transition from the

Laughlin ν = 1
2

state to a superfluid. Notice that the critical

theory involves two species of Dirac fermions.

We can thereby produce

a boson phase diagram

that includes these three

phases.

(The state with (c1, c2) = (−2, 1) is also interesting – it is a

boson IQH state with ν = 2.)

Now we can use this to make a theory of electronic transitions out of the HLR

phase, for example to a Mott insulator. In our description of the HLR phase, the Hall

response comes entirely from that of b. When b goes from the ν = 1
2

state to the Mott

insulator, the full electron state goes from HLR to a (fermionic) Mott insulator. (And

40Another way to think about (2.81) is to integrate out a and see what effective action we get for A.

The equation of motion says roughly ∂2a ∼ ∂A, and plugging back in we get Leff[A] ∼ A∂
(

1
∂2

)
∂A ∼

A2, a Meissner mass for A, as we should have in a superfluid.
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indeed, the general formula, if f also fills Chern bands with Chern number ν?, is

ν =
c1c2ν

?

(c1 + c2)ν? + c1c2

. (2.82)

Again if (c1, c2) = (1, 0), we find no Hall response.)

With the fractionalization c = bf , if b instead forms a super-

fluid state, it completely higgses the U(1) gauge field gluing

together b and f . The result is that we can forget about both

b and the gauge field, and we get an ordinary Fermi liquid. So

in this way we can describe a phase diagram containing the

HLR state, Mott insulator and ordinary metal. You could

imagine moving around in such a phase diagram by applying

a periodic potential to a 2DEG, at fixed electron density and

magnetic field. Recently such a transition seems to actually

have been realized in twisted bilayer dichalcogenides. See

here for an update of the theory.
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