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A goal for holography
Can we formulate a tractable effective description of the
low-energy physics of a system
with a Fermi surface?,
but without long-lived quasiparticles?

? Multiple possible definitions:

1. In terms of transport: e.g. ρ(T ) ∼ Tα<2.

2. In terms of scaling of entanglement entropy of
regions: S(L) ∼ Ld−1 ln kFL.

3. In terms of single-particle response:
Fermi surface ≡ {k | G−1(k , ω) = 0 at ω = 0}
Here G = 〈c†c〉 is a correlator of a gauge-invariant fermion

operator, like an electron, effectively.

The kind of function I have in mind is G ∼ 1
cω2ν+|k|−kF

.

This will be worthwhile even if the toy model has exotic short-distance physics.

Benefit of holography: 0th-order approx far from weakly-coupled particles.



Lightning Review

of
Holographic Duality



Holographic duality (AdS/CFT)
[Maldacena; Witten; Gubser-Klebanov-Polyakov]

gravity in AdSd+1 = d-dimensional Conformal Field Theory
(many generalizations, CFT is best-understood.)

AdS : ds2 =
r2

R2

(
−dt2 + d~x2

)
+ R2 dr

2

r2

isometries of AdSd+1 ! conformal symmetry

IR UV
u
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The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)



when is it useful?

ZQFT [sources] = Zquantum gravity[boundary conditions at r →∞]

≈ e−N
2Sbulk[boundary conditions at r→∞]|extremum of Sbulk

classical gravity (sharp saddle) ! many degrees of freedom per
point, N2 � 1

fields in AdSd+1 ! operators in CFT
mass ! scaling dimension

boundary conditions on bulk fields ! couplings in field theory

e.g.: boundary value of bulk metric limr→∞ gµν

= source for stress-energy tensor Tµν

different couplings in bulk action ! different field theories

large AdS radius R (Λ = − 6
R2 � M2

p ) ! strong coupling of QFT



Holographic Fermi surfaces



Minimal ingredients for a holographic Fermi surface

Consider any relativistic CFT with a gravity dual → gµν

a conserved U(1) symmetry proxy for fermion number → Aµ

and a charged fermion proxy for bare electrons → ψ.

∃ many examples. Any d > 1 + 1, focus on d = 2 + 1.



The problem we really want to solve
Wilson tells us to use the following action in the bulk:

Ld+1 = R+ Λ− 1

g2
FµνF

µν + κψ̄i ( /D −m)ψ

↑

(with AdS boundary conditions,

and a chemical potential: At ≡ Φ→ µ at the boundary.)



Limit 1:
Completely ignore bulk matter fields in constructing the geometry

Ld+1 = R+
d(d − 1)

R2
− 2κ2

g2
F

F 2 + ψ̄i ( /D −m)ψ + ...

Then the solution of the bulk EoM with the right boundary conditions is the

extremal charged black hole in AdS (‘Reissner-Nördstrom’):

ds2 = −f (r)dt2 +
dr 2

f (r)
+

r 2

R2

(
dx2 + dy 2

)
,

f (r) =
r 2

R2

(
1 +

Q2

r 3
− M

r 3

)
, Φ = µ

(
1−

( rH
r

))
.

‘Extremal’ means T = 0. f ∼ (r − rH)2 near the horizon.



Extremal black hole in AdS
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charged

Near-horizon geometry is AdS2 × Rd−1.

ds2 ∼ −dt
2 + du2

u2
+ d~x2 u ≡ 1

r − rH

The conformal invariance of this metric is emergent.

t → λt, x → λ1/zx with z →∞.

boundary

d+1
AdS

d−1

xRAdS
2

horizon

r−1<<1 r>>1
ω � µ ω � µ

AdS/CFT =⇒ the low-energy physics governed by dual IR CFT.



Fermi surfaces
To find FS: look for sharp features in fermion Green functions GR

at finite momentum and small frequency. [S-S Lee]

To compute GR : solve Dirac equation in charged BH geometry.
‘Bulk universality’: results only depend on q,m.

GR(ω, k) ∼ 1

G(k, ω) + k⊥

The location of the Fermi surface is
determined by short-distance physics
(analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac

equation in full BH)

but the low-frequency scaling behavior near
the FS is universal (determined by near-horizon

region – IR CFT correlator G = c(k)ω2ν).

In hindsight: “semi-holographic” interpretation [FLMV, Polchinski-Faulkner]

quasiparticle decays by interacting with z =∞ IR CFT d.o.f.s dual
to AdS2 × IR2 region.



Drawbacks of this construction

1. The Fermi surface degrees of freedom are a small part (o(N0))

of a large system (o(N2)). (More on this in a moment.)

2. Too much universality! If this charged black hole is inevitable,
how do we see the myriad possible dual states of matter (e.g.
superconductivity...)?

3. The charged black hole
violates the 3rd Law of Thermodynamics (Nernst’s version):
S(T = 0) 6= 0 – it has a groundstate degeneracy.

This is a manifestation of the black hole information paradox:

classical black holes seem to eat quantum information.

Problems 2 and 3 solve each other: degeneracy =⇒ instability.
The charged black hole describes an intermediate-temperature phase.



Idea: make the bulk fermions more important (solves problem 1).

They will back-react on the geometry (solves problems 2 and 3).
[Hartnoll-Polchinski-Silverstein-Tong 09]

Problem: it’s hard.

Limit 2:
Very heavy fermions in the bulk



Electron stars

[Hartnoll and collaborators, de Boer-Papadodimas-Verlinde]

Choose q,m to reach a regime where
the bulk fermions can be treated as a

(gravitating) fluid
(Oppenheimer-Volkov aka Thomas-Fermi

approximation).

−→ “electron star”

But:
• Because of parameters (large mass) required for fluid approx,
the dual Green’s function exhibits many Fermi surfaces.
[Hartnoll-Hofman-Vegh, Iqbal-Liu-Mezei 2011]

• Large mass =⇒ lots of backreaction =⇒ kills IR CFT
=⇒ stable quasiparticles at each FS.

To do better, we need to take into account the wavefunctions of the bulk

fermion states: a quantum electron star.



The Thomas-Fermi approximation matters
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A (warmup) quantum electron star

Limit 3:

Find back-reaction of fermions on the gauge field, but ignore gravitational

back-reaction of both fermions and gauge fields.

Ld+1 =
R+ Λ

GN
− 1

g2
F 2 + κψ̄i ( /D −m)ψ

Probe limit: GN → 0 [like HHH 0803]

QFT Interpretation: most CFT dofs are neutral. (c ∼ L2

GN︸ ︷︷ ︸
∝〈TT〉

� 1
g2 ∝ 〈jj〉)

A solution of QED in AdS [A. Allais, JM, S. J. Suh].



Towards a quantum electron star

ψ
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[Sachdev, 2011]: A holographic model of a
Fermi liquid.

Like AdS/QCD: a toy model of the
groundstate of a confining gauge
theory from a hard cutoff in AdS.

Add chemical potential.

Compute spectrum of Dirac field,
solve for backreaction on Aµ.
Repeat as necessary. (Hartree-Fock)

The system in the bulk is a Fermi liquid

(in a box determined by the dual gauge

dynamics).
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The system in the bulk is a Fermi liquid

(in a box determined by the dual gauge

dynamics).



Towards a fermion-driven deconfinement transition

Lots of low-E charged dofs
screen gauge interactions.

�
Effect of fermions on the
gauge dynamics =
gravitational backreaction.

A real holographic model of
confinement: AdS soliton

first attempt: →

η

ψ

What’s the endpoint of this transition?



A quantum electron star in AdS

Zeroth-order problem: what can the state of the bulk fermions be if the

geometry has a horizon?

Probe limit (GN → 0):
Fix the geometry to be AdS

with an IR cutoff.

/DΦψ = 0

Φ′′ = −q2ρ

ψ =: (−gg zz)−
1
4 e−iωt+ikix

i
χ

Normalizable BCs at z = 0,

hard-wall BC at z = zm(
Φ(z) + k ∂

∂z −
m
z

− ∂
∂z −

m
z Φ(z)− k

)
χn = ωnχn

Φ′′(z) = −q2 (ρ(z)− ρ(z)|Φ=0) ,

ρ(z) ≡
∑

n,ωn<0

ψ2
n(z)



A quantum electron star in AdS
The limit zm →∞ exists! :
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The padded room

Compute charge density:

〈n(z)〉 = 〈ψ†(z)ψ(z)〉 =
∑
k

nk(z) ∼
∫ Λ

d2k
1

k2
Φ′′(z) + finite

Cutoffs everywhere: UV cutoff on AdS radial coordinate, bulk UV cutoff

(lattice), UV cutoff on k integral, IR cutoff on AdS radial coordinate: zm.

Charge renormalization.
Define charge susceptibility by linear

response:

χ ≡
∑
k

χ(k), χ(k) =
∆ρk(z?)

Φ′′(z?)

q2
R = q2

0

1

1− q2
0χ

�



Two physics checks:

1) Surface charge. Our bulk
charges are not mobile in the AdS
radial direction.
(Like metal of finite extent along one axis.)

An electric field applied to an insulator

polarizes it.

This results in a surface charge
σb = n̂ · ~P.

2) Chiral anomaly.
Each k mode is a 1+1 fermion field

Sk =
∫
drdt iψ̄k

(
/D + m + iγ5k

)
ψk

?
=⇒ ∂rnk → 0 when m, k → 0.

Not so in numerics:

∂µj
µ
5 =

1

2π
εµνF

µν = − 1

π
Φ′ X



Semi-holographic interpretation

In retrospect, the dual system can be regarded as

a Fermi Surface coupled to relativistic CFT (with gravity dual)

Φ(z) : how much of the chemical potential is seen by the dofs of
wavelength ∼ z .
Convergence of EOM requires Φ(∞) = 0, complete screening in far IR.

Φ(∞) = 0 means FS survives this
coupling to CFT:
FS at {ω = 0, |~k | = kF 6= 0} is
outside IR lightcone {|ω| ≥ |~k|}.
Interaction is kinematically forbidden.
[Landau: minimum damping velocity in SF;

Gubser-Yarom; Faulkner et al 0911]

In probe limit, quasiparticles survive.

With “Landau damping,” IR speed of light

smaller, maybe not.
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Electron stars minus zero/no limit

She knows there’s no success like failure

And that failure’s no success at all.



Towards gravitating quantum electron stars

When we include gravitational backreaction
(dual to effects of FS on gauge theory dynamics)

the IR geometry can be different from the
UV AdS.

Optimism: happy medium between

AdS2 (no fermions)

and
classical electron star (heavy fermions).



Obstacles
Consider a massless Dirac fermion in 1+1 dimensions, Φ = 0.

Fixed metric: ds2 = −ft(z)dt2 + fz(z)dz2

For convenience take z ' z + 2π. WLOG fz = 1 gauge.
Conformal anomaly:

Tµ
µ =

1

4π
R(z) =

1

4π

(
1

2

(
f ′2t
ft

)2

− f ′′t
ft

)

H =

 0 −
(

ft
fz

)1/4

∂z
(

ft
fz

)1/4(
ft
fz

)1/4

∂z
(

ft
fz

)1/4

0

 , Hψa = ωaψa.

Latticize, add up:

Tµ
µ =

∑
a ∈ spectrum of H

θ(−ωa)ψ†a (...)ψa =
1

4π

(
3

4

(
f ′2t
ft

)2

− f ′′t
ft

)

Not a scalar!



Obstacles, cont’d

Why not covariant?

e.g.: ft = 1 + .3 cos z + .2 cos 2z ,

n = 249 sites.

IPRk ≡
∫
dz |ψ|2k



Solution, pt 1: Even more regulators!

• An additional (bulk UV) regulator is required:

ρbare(s) ≡
∑
a

θ(−ωa)ψ†aψa e−s|ωa|

Cuts off (exponentially) the contribution of the localized modes.
Must have: 1/s � 1/a to keep the lattice artifacts out.

(This is point-splitting in t. Not covariant.
Hamiltonian Pauli-Villars would also work in principle, and is covariant. But it
only kills the UV bits by a power-law suppression: 1/p2 − 1/(p2 + M2).

Not fast enough.)

• Hard wall IR cutoff at z = zm also obstructs covariant T ν
µ .

Better (bdy) IR regulator: dx2 + dy2 → dθ2 + sin2 θdϕ2

Bulk geometry can end smoothly in IR when radius(S2)→ 0

(with obvious boundary conditions on the spinors).

[Used by Gentle, Rangamani, Withers for holographic SF.]

Must also have: 1/s � 1/`max.



Sol’n, pt 2: Adapted spectral methods
Need: accurate orthonormal eigenfunctions with few lattice points.
Approximate them by orthogonal polynomials φi : ψ = µ(r)

(∑
i a

iφi

)
choose measure Ω ∝ √µ to factor out singularities of eigenf’ns:∫ 1

−1
drΩ(r)φ†i (r)φj(r) = δij .

Choose grid points by solving a QM problem:
diagonalize the position operator

Xij ≡ 〈i |x̂ |j〉 ≡
∫ 1

−1
drΩ(r)φ†i (r)rφj(r).

The eigenvectors are the cardinal functions Ci :∫
Ω(r)p(r)dr =

n∑
i=1

wip(xi )

is exact if p is a polynomial of degree less than 2n.

Quadrature weight is wi = 1
Ci (xi )

2 .

(Ci ,Cj) = δij , (Ci , xCj) = xiδij .



Sol’n, pt 3: Adiabatic subtraction

〈T 〉 ∼ a

s4
+

b

s2
+ c ln s + finite.

UV divergences come from local

contributions. To compute the contribution

at each point, Taylor expand around that

point [Schwinger, de Wit, Birrell-Davies].

a = δΛ gµν

b = δ
(

1
GN

) (
Rµν − 1

2gµνR
)

It works!
It gives a covariant answer.

Spinor energy density in empty AdS : −→
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Holographic UV divergences

Energy density in some AAdS geom: −→

Color is bulk position:
red–blue is IR–UV

Note: divergence at UV boundary.

Finite at fixed radial cutoff.

This is a dual-QFT UV divergence,

fixed by holographic renormalization. −→
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Remaining step: iteration

10 Given geometry, find sources

20 Given sources, find geometry

30 GOTO 10

Solve (lattice) Einstein equations using relaxation method.

Check of method: zero-temperature holographic superconductor:
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Concluding comments

1. This may seem like a lot of effort, but it’s still a lot easier
than directly solving a strongly-coupled quantum many body
problem.

2. We are used to interpreting the radial dependence of the bulk
fields as encoding running coupling constants in the dual QFT
(along with information about the state).
How should we interpret holographically
the (quantum) information in bulk fermion fields?

3. Q: What do the bulk fermions do to the IR geometry?
What other Fermi surface states can arise holographically?

A: We’ll see!



The end.

Thanks for listening.





Physics of (GN = 0) quantum electron star

UV lightcone for charge-q dofs:
{(ω, k)|(ω + qµ)2 ≤ c2k2}

IR lightcone for charge-q dofs:
{(ω, k)|(ω + qΦ(∞))2 ≤ c2k2}
FS boundstate can scatter off these
dofs (recall tunneling into AdS2).
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Q: What’s Φ(∞)?
A: Φ(∞) = 0. If Φ(∞) 6= 0: occupation of continuum.

ψIR LC(z)
z→∞→ e iκz =⇒ ρ(z)

z→∞→ const

=⇒ Φ(z)
z→∞∼ z2 6= Φ(∞)

Q: Whence power-law?
A: The modes which skim the IR
lightcone. Matching calculation?
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