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Big goal: Understand the structure of entanglement in physical
states of quantum field theories

I

necessary for numerical simulation
(What resources are required?

where in Hilbert space to look?)

I

useful as a diagnostic
(how to distinguish different phases with the same

symmetries?) [Fig: T. Grover]

I
point of contact with holographic duality
(entanglement entropy ' bulk area ) [Fig: D. Harlow]



Context
I H = ⊗xHx

I H =
∑

x Hx hamiltonian ‘motif’
(rules out many horrible pathologies). support of Hx is localized.

I families of systems labelled by (linear) system size L:
HL with groundstate(s) {|ψL〉}

Coarsely-stated, impossible desideratum: low-depth unitary U which
constructs the groundstate from smaller unentangled subsystems :

|ψL〉
??
= U|0〉⊗L U

??
=

Warmup example
(d = 1, s = 0):
H(η) =

∑
n(1 + (−1)nη)c†ncn+1 + hc

adiabatically deform 1d band insulator

to product state

Construct: U
?
= Pe i

∫ 1
0 dηH(η)



There are two problems with this plan, in general

Construct: U
?
= Pe i

∫ 1
0 dηH(η)

1. (Technical, solvable) Even if H(η) all have gap ≥ ∆ > 0,
adiabatic evolution has a nonzero failure probability (per unit

time, per unit volume).

Solution [Hastings, Wen]:
Find quasilocal K such that

i∂η|ψ(η)〉 = K(η)|ψ(η)〉
 Produce quasi-local U = e i

∫ 1
0 dηK(η).

K = −i
∞∫
−∞

dtF (t)e iH(η)t∂ηH(η)e−iH(η)t

F (t) odd, rapidly decaying, F̃ (0) = 0,

F̃ (ω) = − 1
ω
, |ω| ≥ ∆.

Quasilocal means:
U = e iK , K =

∑
x Kx , Kx =

∑
r Kx,r

Kx,r supported on disk of radius r , ||Kx,r || ≤ e−r1−d

2. (Crucial, physical) Nontrivial states of matter are defined by the
inability to find such a gapped path to a product state!



Expanding universe strategy
[Swingle, JM, 1407.8203, PRB]

Instead, we are going to grow the system
|ψL〉 → |ψ2L〉 with local unitaries.

Then, iterate: U ∼ · · · ◦ U4L0←2L0 ◦ U2L0←L0 .

U will in general not have finite depth.
but U will have an RG structure.

Assumptions:

I Raw material: a bath of ‘ancillas’ ⊗|0〉M is freely available.

I For rigorous results, energy gap ∆ for all excitations.

I There may be groundstate degeneracy G (HL)
but the groundstates are locally indistinguishable
(a necessary condition for the state to be stable)



d = 1, s = 1 example: (Not like crystal growth!)

|ψ2L〉 = U
(
|ψL〉 ⊗ |0〉L

)
.



An s-source RG fixed point

(in d dimensions) is a system whose
groundstate on (2L)d sites can
be made from s copies of the
groundstate on Ld sites (plus
unentangled ancillas ) using a
quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

|ψ2L〉 = U

|ψL〉 · · · |ψL〉︸ ︷︷ ︸
s

⊗|0〉M


M = Ld(2d − s)



How to construct U:
By quasiadiabatic evolution from

∑s
1 HL +

∑
ancillas, a Za to H2L:

(e.g. for s = 1 we must start with s = 1 copy at size L.)

 Produce

quasi-local U .

[Hastings, Wen]

Reminder: quasilocal means:

U = e iK , K =
∑

x Kx , Kx =
∑

r Kx,r Kx,r supported on disk of radius r , || Kx,r || ≤ e−r1−d

Basic property: Recursive entropy bounds:
(Uses Small Incremental Entangling result of

[Kitaev, Bravyi, van Acoleyn-Marien-Verstraete 2014].)
S(2R) ≤ sS(R) + kRd−1

S(2R) ≥ sS(R)− k ′Rd−1



Why is s-source RG fixed point a useful notion?

1. Such a circuit controls the growth of entanglement with system size:

Area law theorem: any s ≤ 1 fixed point in d > 1 enjoys an
area law for EE of subregions.

S(A) ≡ −trρA log ρA ≤ k |∂A| = kRd−1.

s ≥ 2d−1 is required to violate the area law.

2. The groundstate degeneracy satisfies: G (2L) = G (L)s

3. s (smallest possible) is a property of the phase (since by definition an

adiabatic path connects any two representatives) =⇒ classification axis.

4. The circuit implies a MERA representation of the groundstate.



Many interesting states are s-source fixed points

• Mean field symmetry-breaking states (s = 0)

• Chern insulators, IQH (s = 1)

• Topological states (discrete gauge theory, fractional QH), including chiral

ones (s = 1)

• Any topological quantum liquid
≡ insensitive to smooth deformations of space ' gapped QFT

has s = 1.
Why: place it in an expanding universe ds2 = −dη2 + a(η)2d~x2



Experimental example: QCD

I Our universe is expanding, tdoubling ∼ 1010years.

I The QCD gap stays open (mπ,mp > 0).

I This is a gapped path from |ψL〉 to |ψ2L〉 .

I =⇒ ∃ a quasilocal unitary which constructs the QCD
groundstate from a small cluster plus ancillas
(i.e. QCD has s = 1 ).

This suggests a new approach to simulating its groundstate which is in

principle very efficient.



Reason to care #3: Classification of gapped states by s

← e.g.:
Layers of FQHE,

X-cube model [Chen et al],
Haah’s cubic code [Haah]

have d = 3, s = 2.

=⇒ extensive GSD!

no ordinary TFT!



Reason to care #4: U MERA
A MERA is a representation of the groundstate which: [Vidal]

I allows efficient computation of observables (few contractions)
I organizes the information by scale (like Wilson and AdS/CFT taught us to do)

I geometrizes the entanglement structure [Swingle]

(Best representation of 1d critical states, very hard to find in d > 1.)



MERA representations of s = 1 fixed points

Quasilocal U
Trotter→ low-depth circuit:

|ψL〉 ' Ucircuit|ψL/2〉|0〉L/2

finite overlap requires ˆ̀∼ log1+δ(L)

=⇒

bond dimension ∼ e
ˆ̀d ∼ ec logd(1+δ)(L)

Crucial point: This construction of Ucircuit

requires no variational sweeps on large

system.

d = 2:

1 

2 

3 

d = 3:



Gapless states and s-sourcery

I ‘Entanglement Thermodynamics’ constrains area law violation
by gapless states

I and gives a relation between s and scaling exponents (s = 2θ).

I Examples of RG circuits for nontrivial critical points.



Entanglement bounds for gapless states

The area law is violated in groundstates of metals: S ∼ Rd−1 log kFR.

This violation is a symptom of many low-energy extended modes.

=⇒ can be seen in thermodynamics.

Result: [Swingle-JM, 1505.07106, PRB]

If: thermal entropy of a

scale-invariant state is s(T ) ∼ T
d−θ
z

z ≡ dynamical exponent
θ ≡ hyperscaling violation exponent

(anomalous dimension of Ttt)

Then: the groundstate
EE obeys the area law
when θ < d − 1
and 0 < z <∞.

(Recall: a Fermi surface has

θ = d − 1.)

Furthermore: s = 2θ .

(Fermi surface has cV ∼ S ∼ T =⇒ θ = d − 1,

hence s = 2d−1, marginally violates area law. X)



Entanglement thermodynamics

Idea: Recast EE as local thermodynamics problem (T = Tx)

Find σA ' Z−1e−
∑

x
1
Tx

Hx (H ≡
∑

x Hx . local Gibbs state)

such that S(σA) ≥ S(ρA) .

Who is σA?
State of max entropy consistent w 〈Hx〉 in A.

(hence S(σA) ≥ S(ρA))

[Cramer et al 2010, Swingle-Kim 2014]
=⇒ σA ∝ e−

∑
x∈A Hx/Tx

1/Tx = Lagrange multipliers

trHAσA = trHAρA

= Eg ,A︸︷︷︸
gs energy of HA

+O (|∂A|`|Hx |)
=⇒ σA is a state with

excitations localized at ∂A,

Tx → 0 in interior of A.



Entanglement thermodynamics
Crucial Fact (local thermodynamics): For scaling purposes,

trHAσA ' Eg ,A +

∫
A
ddx e(Tx)

−trσA logσA '
∫
A
ddx s(Tx)

e(Tx) = Ts(Tx), bulk thermodynamic densities at temp Tx .

Why: True if 1� ∇Tx
Tx
· ξx (for all x) (ξx ≡ local correlation length).

But: let σA(τ) ≡ Z (τ)−1e−
1
τ

∑
x H̃x/Tx τ→1→ σA.

This state has temperature Tx(τ) = τTx , =⇒ ξx(τ) ∼ Tx(τ)−1/z ∝ τ 1/z

So (unless z =∞!) the figure of merit for local thermo in state σA(τ) is

1� ∇Tx(τ)

Tx(τ)︸ ︷︷ ︸
∼τ0

· ξx(τ)︸ ︷︷ ︸
∼τ−1/z

τ→∞→ 0.

S(σA(τ)) = τ
d−θ
z S(σA) =⇒ scales the same way with region size.



Scaling in strip geometry

To use local thermo, we need Tx .

Our question is local. Choose convenient geometry.

Translation invariant in d − 1 dims (PBC). R � w � a.

Scale invariance =⇒

Tx ∼


x−z

∞ (no)

0 (sometimes: frustration free H)

=⇒ e(Tx) ∼ x−z+θ−d , s(Tx) ∼ xθ−d

SA ≤ −trσA lnσA ∼ Rd−1
∫ w
a dx x−d+θ

∼ Rd−1
(
a−d+θ+1 − w−d+θ+1

) w→∞→ ∞ only if d < 1 + θ

Hence: scale invariant states with θ < d − 1 obey the area law.



Connection to s-sourcery

[Swingle-JM, 1505.07106]

If our scaling theory is an s-source RG fixed point

S(2R) ≤ sS(R) + kRd−1 .

Assume saturated (if not, can use smaller s) =⇒

SA = k

(
R

a

)d−1 log2(w/a)∑
n=0

( s

2d−1

)n
R�w�a' k

(
R

a

)d−1(
1−

( a

w

)d−1−log2 s
+ · · ·

)
Compare subleading terms in EE of strip:

s = 2θ



Gapless states with explicit s = 1 RG circuits
Expectation: CFTs are s = 1 fixed points.
∞ many examples of d = 2 quantum critical points

which are exact s = 1 fixed points: ‘Square-root states’ [Kimball 1979]

• Classical stat mech model
in d space dimensions

−→ • Quantum system
in d space dimensions

• configurations s −→ • states |s〉 (orthonormal)
• Boltzmann weight e−βh(s)

Z ≡
∑

s e
−βh(s)

−→ • g.s. wavefunction
|h, β〉 = Z−1/2

∑
s e
−βh(s)/2|s〉

• coolness β = 1/T −→ • coupling

e.g. near-neighbor Ising
model: h(s) =

∑
〈ij〉 si sj

−→
Zi |s〉 = si |s〉. Parent Hamiltonian:

H =
∑

i

(
−Xi + e−βZi

∑
〈i|j〉 Zj

)

• correlations 〈ZrZr ′〉 =
• correlations of diagonal operators
〈gs|ZrZr ′ |gs〉

• classical critical point −→ • quantum critical point
• real-space RG scheme −→ • quantum RG circuit with s = 1



RG circuits for square root states: example
2d classical Ising TRG scheme: Z =

∑
abcd ... TabcTade · · ·

Two parts of classical RG step

[Levin-Nave]:

1 :
∑

e TabeTcde =
∑

f Sacf Sbdf∑
e =

∑
f

[Different use of related machinery: Evenbly-Vidal, TNR]

2 :
∑

abc SakcScjbSbia = T ′ijk∑
abc =

Quantum version:

U1

∣∣∣∣ 〉
⊗ |0〉f =

∑
f

∣∣∣∣ 〉
⊗ |0〉e . U2

∑
abc

∣∣∣∣ 〉
=

∣∣∣∣ 〉
⊗ |000〉

U =
∏

U2
∏

U1

Fixed point of
classical TRG
=⇒ s = 1 fixed point.

[JM, B Swingle, Shenglong Xu, 1602.02805, PRB]



Numerical s-sourcery

[w/ Chris Olund, Snir Gazit, Norman Yao (Berkeley), in progress]



s-sourcery with teeth

Trotterize expanding-universe time evolution UL : L→ 2L.

Iterate:



‘Control theory’ implementation

First step: ↑ find L = 4

groundstate |ψ0〉L
(DMRG or ED).

Second step: find tensors.

idea #1: find the tensors which optimize the fidelity in

going from L = 4 to L = 8 and repeat.

bad: (1) fidelity is too stringent a metric. (2) away

from fixed points, circuit should not be scale invariant.

idea #2: greedy algorithm. first optimize 4→ 8 layer.

then optimize 8→ 16 layer, etc.



Results

For Ising chain, H = −J
∑
〈ij〉 σ

z
i σ

z
j − h

∑
i σ

x
i − hz

∑
i σ

z
i

(integrability-breaking does not qualitatively change the outcome).

Some noise and basin-hopping required

to avoid local minima (not used for

MERA optimization).

The maximum of the error as a

function of h is not at the max

correlation length.



Mixed s-sourcery



Motivation: finite-T quantum memory/topological order

Stable finite-T

classical memory:

Ising model in d > 2

Energy cost to flip bit ∝ Ld−1 vs d = 1.

T = 0 quantum

memory:

e.g. toric code in

d = 2, 3
WV = −VW

At T > 0, density of anyons

∝ e−∆/T .

Stable finite-T quantum memory:

2-form toric code in d = 4

Anyonic excitations are

strings: density

∝ e−σL/T
L→∞→ 0



∃ finite-T stable quantum memory in d ≤ 3?

Best attempts so far: gapped fracton models [Haah, Vijay, Fu, Williamson, Chen, Hermele...].

[fig: A. Pasieka]

Anyonic excitations can be immobile.
But [Bravyi-Haah]:
in known models, there’s a lot of them.
Entropy wins in F = E − TS .

It seems Tc = 0 still.

Further motivation for mixed s-sourcery:
The extension of tensor network ideas to open quantum systems will be useful.
Even for thermal equilibrium, given ρ = Z−1e−βH,

expectations are not, in general, computable.



Mixed s-sourcery
[Swingle-JM, 1607.05753]

What should replace the unitaries in the s-source RG circuit?

A sequence of states {ρL} form a purified s source fixed point if there exists a
sequence of purifications {|√ρL〉12} with tr2(|√ρL〉〈

√
ρL|12) = ρL and

|√ρ2L〉 = Ṽ

|√ρL〉 ⊗ ...⊗ |√ρL〉︸ ︷︷ ︸
s times

⊗|0...0〉


where |0...0〉 is a product state of the appropriate size and Ṽ is a quasi-local

unitary on AsE . i.e.: ∃ a quasilocal channel ρ2L = N
(
ρ⊗s
L ⊗ |0...0〉〈0...0|

)
.

• The entropy can be volume law, but the mutual information
(I (A : B) ≡ S(A) + S(B)− S(AB) bounds correlations) is still area law:

I (A2R : Ac
2R) ≤ sI (AR : Ac

R) + kRd−1.

• Local channel preserves locality of operators =⇒ efficiently contractible.



Local free fermions are mixed s = 0 [Swingle-JM, 1607.05753]

H =
∑
xy

c†xhxycy + h.c ., with hxy → 0 for |x − y | � a

thermal eqbm: ρT = e−H/T/Z = tr2

∑
E

√
e−βE

Z
|E 〉1|Ẽ 〉2︸ ︷︷ ︸

≡|T 〉

is s = 0.

|T 〉 is the groundstate of (fk = 1
eεk +1

)

HT ≡
∑
k

(
−d†kdk + d̃†k d̃k

)
, (dk ≡

√
fk ck +

√
1− fk c̃k ,

d̃k ≡ −
√

fk ck +
√

fk c̃k
)

which is gapped, local and adiabatically connected to

H∞ = −
∑
x

(
c†xcx + c̃†x c̃x

)
, |gs∞〉 =

∏
x

c†x + c̃†x√
2
|0〉 (ultralocal).

So the resulting a quasiadiabatic U gives a quasilocal channel:

ρT → tr2U|T 〉〈T |U† = product state.



Approximate quantum Markov chains
Basic idea: at finite T , correlations are short-ranged.
=⇒ The full state can be reconstructed by local operations on its parts.

• classical Markov chain A→ B → C has no memory: p(c|ba) = p(c|b).

0 = I (A : C |B) ≡ H(AB) + H(BC)− H(ABC)− H(B)

reconstruction (Bayes, 1750s) : p(abc) =
p(ab)p(bc)

p(b)

• exact quantum Markov chain (saturates SSA):

0 = I (A : C |B) ≡ S(AB) + S(BC)− S(ABC)− S(B)

reconstruction (Petz, 1980s) : logρABC = logρAB − logρB + logρBC .

• approximate quantum Markov chain: 0 ' I (A : C |B)

reconstruction (Fawzi-Renner, 2015) : ρABC ' (1A ⊗NBC ) (ρAB) .

This is a refinement of SSA: I (A : C |B) ≥ D(ρABC , reconstruction). (D = distance)

[Fawzi-Renner]: approximate quantum Markov chains can be reconstructed from

marginals via a channel on the buffer.



A sufficient condition for mixed s = 0

S(A) = c1vol(A) +

∫
∂A

(
c2 +

∑
i>2

ci fi (K ,R)

)
+O(`de−`/ξ) (?)

` ≡ linear size of A, K ,R ≡ curvatures of ∂A.

=⇒ I (A : C |B) ≈ 0 if AB + BC − B − ABC = 0
and ∂B + ∂(AC) = ∅ .

Make a cellular decomposition of space
d = 1:

(all regions > ξ)
(d = 2)−→

I (p-cells : (p − 1)-cells|buffer) ≈ O(Ncellse
−`/ξ).

If so, then here is the state:

ρ = ρ2-cells∪1-cells∪0-cells ≈ N1→2(N0→1(N∅→0(·)))

buffer, 0  1 

buffer, 1  2 

0-cell 1-cell 

2-cell 

d = 3:



When is cellular reconstruction possible? (?) is true for:

I invertible states.
I CFT at finite temperature.
I states with classical gravity duals.
I states which are not finite-T quantum memories [Hastings def of TO] :

adiabatically connected to T =∞ =⇒ quasilocal channel to product.

Run the construction backwards: an array of bubbles-of-Nothing.

bubble of Nothing: [Witten 1985]

Two possible obstructions: edge modes and TEE [Preskill-Kitaev].
For p-form gauge theory at T = 0, Ip−1→p, Id−p−1→d−p 6= 0

This construction was used in [Mahajan et al, 1608.05074] to make efficient

representations of non-eqbm steady states associated with dissipative transport.

The idea: despite extensive von Neumann entropy, such states have low

entanglement, hence tensor network representations.



Questions

Q: Is the thermal double
∑

n

√
e−βH

Z |n〉|n〉 always the groundstate
of a local, gapped H?
We showed ‘yes’ for free fermions and for sqrt states.

‘Yes’ lets us use groundstate s-sourcery.

Q: Can we improve the structure of the channel? The range of the

resulting circuits is the thermal correlation length (→∞ as T → 0).

Fawzi-Renner result doesn’t take advantage of locality within the buffer B.

U will be more local if we incorporate the s = 1 groundstate circuit near the IR.

Q: Can we show explicitly that known fracton models are
mixed s = 0?

Q: How to extend mixed s-sourcery to ultra-quantum
non-equilibrium states?



The end.
Thank you for listening.

State of matter z s θ EE

Insulators, etc. Gap 0 n/a Area

SSB, discrete Gap 0 n/a Area

IQHE (invertible) Gap 1 n/a Area

FQHE Gap 1 n/a Area

Topological states Gap 1 n/a Area

Fracton states (w gap, d = 3) Gap 2 n/a Area

SSB, continuous (d > 1) 1 1 0 Area

QCP (conformal), d = 1 1 1 0 Area*Log

QCP (conformal), d > 1 1 1 0 Area

Quadratic band touching 2 ≤ 1 0 Area

Fermi liquids 1 2d−1 d−1 Area*Log

Spinon Fermi surface 3/2? 2d−1 d−1 Area*Log

Diffusive metal, d = 3 2 2d−2 d−2 Area

QED 1 1 0 Area

QCD Gap 1∗ n/a Area



Digression about dragons vs motives
There are nefarious counterexamples (‘dragons’) to many of these statements,

but they all involve some localized cleverness.

An example of a pathology that goes away upon ‘H-motivization’:

Expectation: Any 2d gapped state: SA = R/ε− γ

γ ≡ ‘topological entanglement entropy’ ε ∝ UV cutoff.

signature of topological order (determines D2 abelian
= # of

T 2-groundstates: γ = logD ) [Preskil-Kitaev, Levin-Wen 04].

γ can be extracted by inclusion-exclusion (cancel boundaries):

2γ = SAB + SBC − SB − SABC

Counterexample [S. Bravyi]: a qbit at each site ( X ≡ σx , Z ≡ σz to save eyesight) pick S

Hsnake = −
∑

n∈S Zn−1XnZn+1 −
∑

n/∈S Xn
This state does not have topological order (unique gs)

|gs〉 = |snake state〉S ⊗n/∈S |+〉n

but has γ = 1 6= log(D = 1) = 0. Not motivic!



Digression about dragons vs motives
Make the Bravyi snakes hop [D. Ben-Zion, D. Das, JM, 1511.01539, PRB]:

H = −
∑
i

Ai −
∑
p

BpSp −
∑
i

Xi

∏
l∈i

(Zi+l)
1−σzl

2 .

a solvable model with a H-motif made from the Bravyi snake.

|gs〉 =
∑
{S}

|S〉 ⊗ (|snake state〉S ⊗n/∈S |+〉n)

≡ σz
` = −1

But this is in the same phase as Z2 gauge theory: γ = ln 2. (X)

(Side remark: However, in the presence of symmetry (Z2 × Z2), it is distinct.
This is an example of a symmetry-enriched topological phase:

the anyons come in doublets of Z2 × Z2!)

The point of the Wagnerian digression: it is the motivic
structure itself (not Siegfried) which slays the dragon.

https://www.youtube.com/watch?v=6QSC1rn57ss


Tensors for 2d ising model

Z =
∑

abcd ...

TA
abcT

B
ade · · ·

T T T T

T T T T

T T T T

T T T T

T

T



Further payoff: Invertible states
I A robust notion of ‘short-range-entangled’ Related ideas: [Kitaev, Freed]

‘Invertible states,’ |ψ〉 means ∃|ψ−1〉,U s.t.

|ψ〉 ⊗ |ψ−1〉 = U|0〉⊗2Ld has s = 0.

I Weak area law: a unique groundstate on any closed manifold
(no topological order, but can still be interesting as SPTs)

implies the existence of an inverse state and the area law.

Graphical proof of weak area law:

Decoupled disks with edge states 

Disks   hemispheres 

Gapped sphere Hamiltonian 

Glue at equator 

step 1: ‘edge inverse’

kills edge states

Create microscopic wormholes 
(white holes) 

Pinch off microscopic links 
(grey links) 

Expand wormholes 

Expand wormholes 

step 2: make adiabatic path

to |0〉⊗ on T d

side view of H + Hrev +

wormholes :


