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Testimonials.

... better than CATS.

– Anonymous

... a surprising confluence of physics, programming
and arts & crafts.

– N. I.



Motivation



Landau was even more right than we thought.

Landau paradigm part 1:
Phases of matter are classified by how they represent their symmetries.

(Phases of matter are classified by the symmetries they break.)

Gapless excitations or degeneracy (in a phase) are Goldstone modes for

spontaneously broken symmetries.

Some apparent exceptions:
• topological order [Wegner, Wen]

e.g. deconfined phase of Z2 lattice gauge theory,

fractional quantum Hall states.

• other deconfined states of gauge theory (e.g. Coulomb phase of E&M).

• (Landau) Fermi liquid.

• topological insulator and integer quantum Hall states.

• CFTs with no (symmetric) relevant operators.



Higher-form symmetries.
[Willett et al 14, Hofman-Iqbal, Lake...]

0-form symmetry: 1-form symmetry:

∂µjµ = 0 (i.e. d ? j = 0)
=⇒ Q =

∫
ΣD−1

?j is independent of

time-slice Σ,

i.e. is topological. [Thorngren]

Jµν = −Jνµ with ∂µJµν = 0
(i.e. d ? J = 0)

=⇒ QΣ =
∫

ΣD−2
?J depends only on

the topological class of Σ.

Charged objects are local operators

δO(x) = i[Q,O(x)] = iqO(x).

Charged objects are loop operators:

δW (C) = i[QΣ,W (C)] = iqW (C)
e.g. in free Maxwell theory:

JM = F , WM (C) = ei
∮
C A and

JE = ?F,WE(C) = ei
∮
C Ã (dA ≡ ?dÃ).

Finite transformation:

Ug=eiα = eiαQ = e
iα

∫
ΣD−1

?j
.

Finite transformation:

Ug=eiα(ΣD−p−1) = eiαQΣ = e
iα

∫
ΣD−p−1

?J
.

Charged particle worldlines
can’t end.
Discrete (Zk) version: particles can

disappear in groups of k.

Charged string worldsheets
can’t disappear or end.
Discrete (Zk) version: strings can

disappear or end in groups of k.



Higher-form symmetries.

[Willett et al, Hofman-Iqbal, Lake]

0-form symmetry: 1-form symmetry:

Unbroken phase: correlations of charged
operators are short-ranged, decay when
the charged object (S0 = two points)
grows.

〈O(x)†O(0)〉 ∼ e−m|x|

(|x| = Area(S0(x)).)

Unbroken phase: correlations of charged
operators are short-ranged, decay when
the charged object grows.

〈W (C)〉 ∼ e−Tp+1Area(C)

For E&M, area law for 〈WE(C)〉 is the

superconducting phase.



Landau was even more right than we thought.

• The gaplessness of the photon can be understood as required
by spontaneously broken U(1) 1-form symmetry.
[Willett et al, Hofman-Iqbal, Lake]

Broken phase for 0-form sym:

〈O(x)†O(0)〉 = 〈O†〉〈O〉+ ...

If we couple to a bg field ∆L = jµAµ,

Leff = κ
2

 dφ︸︷︷︸
Goldstone

+A

2

.

The goldstone transforms nonlinearly

φ→ φ+ λ,A → A− dλ. This is a global

symmetry if dλ = 0.

(By (form)2 I mean (form) ∧ ?(form).)

Broken phase for 1-form sym:

〈W (C)〉 = e−TpPerimeter(C) + ...
(set to 1 by counterterms local to C:

large loop has a vev)

If we couple to a bg field ∆L = JµνBµν ,

Leff = g2

4

 dÃ︸︷︷︸
Goldstone

+B

2

.

The goldstone transforms nonlinearly

Ã→ Ã+ λ,B → B − dλ. This is a global

symmetry if dλ = 0.

Maxwell term for A.



Landau was even more right than we thought.
• topological order

?
= SSB of discrete higher-form symmetry.

SSB of 0-form discrete

symmetry =⇒ domain

wall excitations.

SSB of (q > 1)-form discrete symmetry implies

topological order, since the algebra of loop (or surface)

operators must be realized on the vacuum.

• eg 1 (Zk gauge theory): in D spacetime dimensions with Z(1)
k × Z(D−2)

k

1-form and (D − 2)-form symmetries, represented by
Um(C1), V n(MD−2),m, n = 1..k

Um(C)V n(M) = e
2πimn#(C,M)

k V n(M)Um(C). (#(C,M) ≡ intersection #)

This is the algebra of electric and magnetic flux surfaces in Zk gauge
theory. Simple realization is BF theory:

S =
k

2π

∫
D

BD−2 ∧ dA, Um(C) = eim
∫
C A, V n(M) = ein

∫
M BD−2

• eg 2 (FQHE): in D = 2 + 1, Z(1)
k 1-form symmetry with an ’t Hooft

anomaly

Um(C)Un(C′) = e
2πimn#(C,C′)

k Un(C′)Um(C).

(the flux carries charge) gives k groundstates on T 2.

(Whether the most general topologically ordered state can be understood in

this way is an open question [Wen 18].)



‘Beyond-Landau’ critical points?

Landau paradigm part 2:
At a critical point, the critical dofs are the fluctuations of the
order parameter.
Apparent exceptions:
• Direct transitions between states

which break different symmetries

(deconfined quantum critical points),

e.g. Neel to VBS in D = 2 + 1.

[Image: Alan Stonebraker]

• Transitions out of topologically-

ordered states (no local order

parameter).

[Image: Fradkin-Shenker]



‘Beyond-Landau’ critical points?

•

Can be understood in terms of mixed

’t Hooft anomalies [Metlitski-Thorngren 18]

=⇒ WZW terms coupling the

order parameters on both sides.

(Not today’s focus.)

•

Can we understand the critical theory

in terms of fluctuations of the string

order parameter W (C)? But by Weg-

ner’s duality, this theory (up to global

data) is in the same universality class

as the 3d Ising model.

This suggests that the near-critical 3d Ising model should have
a description as a string theory.



3d Ising model as a string theory



3d Ising model as a string theory.

This is something which has been suggested before, from other
points of view. [Fradkin-Srednicki-Susskind 80, Polyakov 81, Dotsenko, Itzykson 82,

Casher-Foerster-Windey 85, Kavalov, Sedrakyan, Distler 92]

Reasons to hope for progress here:
• We’re going to propose a modification to the Ising model, which we think
may have a better string theory description.

• We’ve learned a lot about non-perturbative string theory since 1992!



Fermions from 2d Ising model.[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

Z4(β) =
∑
σ

e−β
∑
〈ij〉(1−σiσj)

= 2
∑
γ

e−2βL[γ]
( = spin up)

On the square lattice, this can happen:

(This is an avoidable, non-universal

technicality, but its resolution is in-

structive.)

Resolution:

Z2(β) = 2
∑
γ

(−1)n[γ]e−2βL[γ] n[γ] ≡ # of self-intersections



Fermions from 2d Ising model.
[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

Z2(β) = 2
∑
γ

(−1)n[γ]e−2βL[γ] = 2 exp


∑

γ,connected

(−1)n[γ]e−2βL[γ]

︸ ︷︷ ︸
worldline sum for real fermion


n[γ] ≡ # of self-intersections

w/ PBC: only even winding configs wx,y[γ] ∈ 2Z correspond to spins

ZT 2 =
∑
γ

1

2

(
1 + (−1)wx(γ)

) 1

2

(
1 + (−1)wy(γ)

)
(−1)n[γ]e−2βL[γ]

= Z++ + Z+− + Z−+ + Z−−.
This sum over spin structures says (−1)F is gauged.



Fermions from 2d Ising model.
[Jordan-Wigner, Lieb-Mattis, ..., Polyakov]

More explicitly, we can make fermion operators:

Disorder operator: µ(x) ≡
∏
〈ij〉⊥Cx e

−2βσiσj .

x ∈ dual lattice. (Flip sign of β along links crossed by C.)

µ is independent of local changes in C by σi → −σi
symmetry. C is a branch cut for σi.

Duality interchanges µ↔ σ.

The self dual object ψa(x) ≡ σ(x)µ(x+ ea) is a fermion

R2π (ψ(x)) = ψa+4(x) = −ψa(x)

and satisfies

〈ψa(x)〉 = cosh(2β)〈ψa+1(x)〉−sinh(2β)〈ψa+2(x+ δa+1)〉

In the continuum limit, this is the Dirac equation, with m ∝ β − βc.



Fermionic strings from 3d Ising model.

[Polyakov, 80s]

Disorder operator:

µ(C) ≡
∏
〈ij〉⊥SC ,∂SC=C e

−2βσiσj .

µ is independent of local changes in SC by σi → −σi
symmetry. SC is a branch cut for σi.

Ψa1···aL(C) ≡ µ(C)
∏L
s=1 σ(xs + eas)

(xs = center of link s) satisfies

Ψa1···aL(C) = cosh(2β)Ψa1···as+1,as+1,···aL(C)

− sinh(2β)Ψa1···as−1,a′s,as+2,a′s+2,as+1,···aL(C + Πas)

Links like free Dirac particles, connected by

unbreakability of domain wall.

This description is shared by the RNS superstring.

ψµ
(
ẋµ − x′µ

)
|phys〉 = 0.



Strong coupling problem.

Distler (1992) argued that the analog of self-intersection number term in the
3d case is the Euler character

Z3d(β) = 2
∑
Σ

(−1)χ[Σ]e−2βArea[Σ]

Just as in the 2d case, we can avoid this is-
sue by working on a lattice where each edge
touches only 3 faces, such as this one:
(corner-sharing octahedra)

But this highlights the fact that |gs| = 1.



Appeal to universality.

Q: can we modify the Ising model so that the dual string theory is weakly

coupled?

(i.e. decrease the weight of domain walls with higher genus in the sum)

Z3d(β, gs) = 2
∑

Σ

(gs)
χ[Σ]e−2βArea[Σ]

χ = 2:

χ = 0:

Possible outcomes, assuming there is still a continuous transition (there is):
(1) Finite gs < 1 leads to a new universality class, where spherical domain
walls dominate.

(2) This changes Tc, but stays in the same 3d Ising universality class.



The planar 3d Ising model



How to change gs?

First idea: On each link of dual lattice (= face of the primal

lattice), place four N × N -matrix-valued real variables φ1,2
± ,

associated with the four faces incident on the link:

∆S[φ, z] =
∑
〈ij〉

(1+σiσj)Γ
∑

α,`∈∂〈ij〉

φ2
α(`)+

∑
〈ij〉

(1−σiσj)gtrφ4+
∑
`,α,β

φα(`)φβ(`)

The trφ4 interaction connects the indices of the ma-

trices on the links bounded by the plaquette like this:

It costs a factor of g ∼ 1
N

.

Configurations where the indices are not contracted contribute zero because

of the angular integral over the φs.
The contribution of a spin configura-
tion acquires a factor of

g# of facesN# of index loops = λ# of facesN2−2g

with λ ≡ gN .

But this model is difficult to simulate

and has an extra O(N) symmetry.



The planar 3d Ising model.

But there’s a much easier way to change the relative weighting of the

domain walls depending on their topology: just modify the Boltzmann

weights!

Z =
∑
s

g−χ(s)
s W0(s)

where W0(s) = e−β
∑
〈ij〉 ZiZj is the usual Ising model Boltzmann weight,

χ(s) ≡ F (s)− E(s) + V (s).

F,E, V = # of faces, edges and vertices of the dual lattice participating in

a domain wall.

A local Hamiltonian!

This statement requires some refinement.



Ambiguity & Resolution.
In how many DWs does a vertex

participate?

=

=

=

One possibility: add an energetic penalty to

exclude the (9) ambiguous configurations.

Doing the analogous thing to the 2d Ising model

(∆E( ) = CUTOFF) does not change the critical

behavior (it merely moves Tc, but ν = 1 still).

Bad for the MC acceptance rate.

Alternative: decide on a decomposition into

elementary constituents.
There are 28 possible configs α of the 8 spins
adjacent to a vertex of Γ̂

−→ Binary vectors, pα ∈ Z12
2 .

Order them by # of faces = Hamming weight

(0 to 12). Choose a basis of lowest weight.

=

p77 = p2 + p9

=

p126 = p6 + p7 + p8



Ambiguity & Resolution.

[images: Distler]

But: not all vertex resolutions are

mutually compatible.

e.g. These two touching S2s would be

assigned χ = 5:

(1) For each vertex of Γ̂, record face connections

implied by the vertex decomposition.

(2) For each edge, check for compatibility between

these face connections. If not, that edge carries a 4π

branch point, ∆χ = −1.

=

Note: This prescription eliminates unoriented

configurations. (An unoriented immersed surface

must have an odd number of triple points:

χ = # of triple points, mod 2. [Banchoff, 74])

a triple point:

=



Numerical implementation: cluster updates.

Critical slow-down: Near a critical point, correlation lengths grow, and

for local Monte Carlo dynamics, so do correlation times.
Remedy: non-local MC dynamics [Sweeny, Wolff, Swendsen-Wang 80s]:

propose moves which update an order-1 fraction of spins at once.

Happily, because our modification of the

Ising interactions depends on the domain

wall configuration, we can adapt these

methods to our model.

Detailed balance

π(a)A (a→ b)P (a→ b)
!
= π(b)A (b→ a)P (b→ a)

(π = Boltzmann wt, A = construction prob,
P = acceptance prob) determines

P (a→ b) = min
(

1, g∆χ
s

)
.

a:

b:



Simulation results.
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Simulation results.
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Critical temperature vs string coupling

Tc does change with gs.

Low-temperature AFM phase?

We can infer the correlation-length critical

exponent ν from the collapse of the Binder

cumulant. We find that the 3d Ising value

ν = 0.62 gives the best data collapse for all

values of gs (option (2) above).

Comment on universality: the 3d Ising fixed point has a fixed point value of

gs, which we cannot change (and do not know yet).

We are merely trying to make the dual string theory weakly coupled on the

way to the fixed point.



Speculations about the worldsheet



Comments on worldsheet theory.

Important Q: how does the Ising Z2 act in the string theory??
Hint 1: The string worldsheet is a branch cut for the spin.

Hint 2: Ising gauge theory has fermions in its spectrum – the boundstate

of e (end of string) and m (vison) is a fermion.

RNS superstring spectra:

RR
NS-R R-NS

NS-NS

mod Ω→
RR

NS-R
NS-NS

?
=
e-particle?

dyon
glueballs

has a spacetime fermion number symmetry.

Orbifolding by (−1)Fs
mod (−1)Fs→

RRL ⊕ RRR

−−
NS-NS

?
=

spin⊕ neutral
−−

neutral
This (unoriented) type 0 theory has two RR sectors, labelled by the

chirality operator Γ.

Conjecture: Γ is the Ising Z2.



Comments on worldsheet theory.

It is tempting to interpret this as a holographic duality.

Adding one extra dimension φ doesn’t solve the problem of making a

critical string theory.
A spacelike linear dilaton (in the radial direction, Φ = Qφ)

could be used to cancel the Weyl anomaly.
But linear dilaton and target-space conformal symmetry (required near the
critical point) are not compatible:
At the critical point, we expect ds2 = ds2

AdS = dφ2 + e−2φd~x2.

If under a spacetime scale transformation φ→ φ+ λ,

Sworldsheet 3
∫
Qφ R

2π
→ Sworldsheet +Qλχ.

[Hellerman-Maeda-Maltz-Swanson 14]: ‘composite linear dilaton’. add

Sworldsheet 3
∫
Qϕ R

2π
where ϕ = 1

∆
lnO∆ is a composite operator which

shifts under a worldsheet scale transformation.

We could choose O2 = e2φ∂αX
µ∂αXµ + ∂αφ∂

αφ, the AdS4 kinetic term,

which is invariant under target-space scale transformations

Xµ → eλXµ, φ→ φ+ λ.

And ϕ = 1
∆

lnO∆ = φ+ log |∂X|+ log |∂φ|.
What is log |∂X|?



Effective string theory.

[Polchinski-Strominger 91, ... Hellerman et al]

A less ambitious but more concrete connection with string theory governs

the fluctuations of a large flat domain wall.

Worldsheet X(σ, τ) coordinate fields arise as Goldstones for breaking of

translations by the wall.

‘Large and flat’ means X(σ, τ) = σ + fluctuations, so ∂X 6= 0, and log(∂X)2

makes sense.

[Caselle-Fiore-Gliozzi-Hasenbusch-Provero 96]

Prediction for R(L, n) ≡ 〈W (L+n,L−n)〉
〈W (L,L)〉 e−n

2σ,

matches lattice simulation

(β = 0.752 < βc = 0.761 ):

[Kuti 05] find a gapped breathing mode on the worldsheet.

Closer to the critical point, we can expect this mode to become gapless: a

goldstone for breaking of scale transformations by the profile of the wall.

This should be the bulk radial coordinate.



Final comments.

It would be interesting to measure 〈χ〉 at the critical point, and the

fixed-point value of gs. This requires measuring the number of connected

components, which is not local information (but can be calculated [Sweeny 83,

Hoshen-Kopelman]).

Large-N puzzle: String theory in flat space has Hagedorn growth of

single-string states at high energy. In AdS/CFT, this is matched by the

large-N growth of the number of words tr (XYXXY · · ·). But our

weak-coupling limit did not involve large-N !

An unoriented string theory without space-filling D-branes? (In all

examples I know, RR tadpole cancellation requires D-branes on top of the

space-filling O-planes.)

A string theory with no dynamical D-branes?



The end.

Thanks for listening.


