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What is a fracton phase?
[Chamon 05, Haah 11, Vijay-Haah-Fu, Pretko, Shirley-Slagle-Chen ... ,

reviews: Nandkishore-Hermele 1803.11196, Pretko-Chen-You 2001.01722]

Def: A phase with excitations that cannot be moved by any local operator.

(Compare: Topological order ≡ a phase with excitations that cannot be

created by any local operator.)

Symmetry-based def: A phase that spontaneously breaks a (p ≥ 1)-form

subsystem symmetry.

Subsystem symmetry: acts only on a subregion (such as a plane).

SSB of (p ≥ 1)-form symmetry: deconfined gauge theory, topological order.

Symptoms:

• particles with restricted mobility.
For gapped fracton phases in 3+1d:

• log(GSD on a T 3 of linear size L) ∼ L
• S(ball of radius R) ∼ R2 − γR



X-cube model. [Haah-Vijay-Fu 16]

Compare: Zp gauge theory aka toric code. Any cell complex,
H = ⊗links, `Hp. Focus on 3d cubic lattice.

HTC = −
∑

sites, s

−
∑

plaquettes, p

Star term
!
= 1 =⇒ closed strings.

Plaquette term
!
= 1 =⇒ uniform superposition of all of them.

8 (locally-indistinguishable) gs on T 3 of any size. Topological order.

X-cube model: Cubic lattice, H = ⊗links, `Hp.

HX-cube = −
∑
sites

 + +

− ∑
cubes

Has 22(Lx+Ly+Lz)−3 (locally-indistinguishable) gs on a T 3.

vs: Lx layers of 2d TC has 22Lx groundstates.

Important point: this GSD is robust, since no local operator relates the gs.



Compare topological excitations. Act on gs with the op.
to create top. excitations.

3d Toric code:
HTC = −

∑
sites, s

−
∑

plaquettes, p

violates at endpoints.

violates at boundary.

Flexible string operators =⇒ ordinary particles and strings.

X-cube model:
HX-cube = −

∑
sites

 + +

− ∑
cubes

color code the star terms:

Rigid string operators =⇒ restricted mobility.



Other topological excitations of X-cube model.

Fractons

(fracton dipole)

(lineon dipole)

Planeons



Tensor gauge theory perspective on fractons.

If dipole moment Px is conserved,

charge can’t move in x̂.

Ordinary (rank 1 vector) gauge theory: Ei, i = x, y, z

Gauss law: ∂iEi = ρ =⇒ Q =
∫
B
ρd3x =

∮
∂B

Eidni

(Charge is locally conserved, can only change by flux through ∂B.)

Rank 2 tensor gauge theory: Eij , i, j = x, y, z
Gauss law: ∂i∂jEij = ρ =⇒ Q =

∫
B
ρd3x =

∮
∂B

∂iEijdnj and

P i =
∫
B
xiρd3x =

∮
∂B

(
xi∂jEjk − Eik

)
dnj .

(Charge and dipole moment are locally conserved, can only change by flux

through boundary of region.)

Note that dipoles are perfectly mobile.

Gapped fracton phases are Higgs phases of (gapless) tensor gauge theories.



Why are fracton models interesting? (1 of 3)

• They are counterexamples to the prejudice that gapped states
of matter are governed by TFT at low energy
(these are ordinary-looking lattice models!)
...which suggests there are useful generalizations of field theory to be found.

[Pretko, Slagle-Kim, Seiberg-Shao et al ]



Why are fracton models interesting? (2 of 3)

• A route to finite-temp quantum memory? [Haah 2011]

All known topological orders in d ≤ 3 are

zero-temperature phenomena.
Why: they have top. quasiparticles with energy ∼ L0.

=⇒ a finite density at any T > 0. Their wanderings

generate logical operators W .

So the idea is that topological order without (flexible)

string operators might do better.

Disclaimers:
• today I am discussing type I fracton models, which do have string
operators.

• even type II fracton models in d = 3 seem to have only logarithmic

barriers [Bravyi-Haah]



Why are fracton models interesting? (3 of 3)

• They require a new definition of phase of matter and of RG
fixed-point. [Swingle-JM 2014, Shirley-Slagle-Chen 2018]

Usual notion of phase of matter: equivalence class of families of systems at
various linear system sizes L:

HA ∼ HB if they are related by adiabatic evolution and addition of

decoupled dofs.

A gapped phase contains a unique RG fixed point representative.

s-source RG fixed point: Fractons require s > 1

Us = 1Us = 0 Us = 2

Foliated fixed point:

= 2d TO layer! = free resource



Fractons and Chern-Simons Theory



Abelian Chern-Simons theory.

L =
KIJ

4π
εµνρAIµ∂νAJρ −

1

4e2
FIµνFµνJ

K is a symmetric matrix of integers. Gauge group is U(1)M .

Maxwell is an irrelevant op, e2 is an energy scale.

Groundstate degeneracy (GSD) on a torus is | detK|.
Anyon statistics: θIJ = 2π

(
K−1

)IJ
Examples:
• K = (1) is IQH.
• K = (3) is Laughlin FQH.

• K =

(
0 2
2 0

)
is Z2 gauge theory/ toric code.

Representative wavefunction:

Ψ
(
{zIi }

)
=

∏
i<j,I,J

(zIi − zJj )KIJ e−
∑
|z|2/4



Deconstruct a third spatial dimension.

a bit like [Arkani-Hamed, Cohen, Georgi hep-th/0104005]

L =
KIJ

4π
εµνρAIµ∂νAJρ −

1

4e2
FIµνFµνJ

Take I, J = 1...L. Think of it as z = aI for some lattice spacing a.

Assume:

• translation symmetry: KIJ = K(I+x)(J+x).

• a version of locality: KIJ = 0 for |I − J | > some finite number.
(‘quasidiagonal’)

Note: we can add the components of the Maxwell term with indices along z

without affecting conclusions.



Trivial example.

K =



. . .

3
3

3

. . .



ν =
1 3

ν =
1 3

ν =
1 3

z ν = 1
3

Defining fracton model features:

• GSD on T 2
xy is 3L.

• Quasiparticles move only
within layers

• S(ball of radius R) ∼
R2 − γR

The first and third features follow

from s = 2.



Interesting example.

K(131) ≡


3 1 1
1 3 1

. . .
. . .

. . .

1 3 1
1 1 3


Striking phenomena:

• GSD =

(
1

2

(
3 +
√

5
))L

+

(
1

2

(
3−
√

5
))L

− 2(−1)L (integers!)

L→∞∼
(

1
2

(
3 +
√

5
))L

• Planon statistics: as L→∞,

θIJ
2π

= K−1
IJ =

1√
5

(√
5− 3

2

)|I−J|
• Planon fusion group is ZFL × Z5FL (FL ≡ Lth Fibonacci number).

θIJ is

(a) Irrational!

(b) Not ultra-local in
|I − J |!



Experimental realization. (!)

ν =
1 5

ν =
1 5

ν =
1 5

z ν = 1
5 Coulomb repulsion

Actually the K(131) model was studied 30

years ago! [Qiu-Joynt-Macdonald 89, 90. Also

Naud-Pryadko-Sondhi 00]

Layers of ν = 1
5

FQH with no tunneling but

Coulomb repulsion =⇒ mutual zeros in

neighboring layers.
Recall:

Ψ
(
{zIi }

)
=

∏
i<j,I,J

(zIi − zJj )KIJ e−
∑
|z|2/4



Contrast with foliated fracton TO.

If log(GSD) ∼ L, what do we mean by ‘phase’? In answer to the question

“what is a fracton phase?” [Shirley-Slagle-Chen 18]

Foliated fixed point:

= 2d TO layer! = free resource

New notion of “stable equivalence” allows the addition of layers of 2d TO.

Consequences of existence of this foliation structure:

• Exponential scaling of GSD is exact

• Statistics are short-ranged

• Planon fusion group has finite order (independent of L)

Conclusion: K(131) is not foliated!



Some other choices of K are foliated.

[Shirley-Slagle-Chen, 1907.09048]

KF =



e1 m1 e2 m2 e3 m3 e4
. . .

0 2 -1
2 0
-1 0 2 -1

2 0
-1 0 2 -1

2 0
-1 0

. . .


→ K−1F = 1

4



m0 e1 m1 e2 m2 e3 m3

. . .

0 1
0 2

1 2 0 1
0 2

1 2 0 1
0 2

1 2 0
. . .


.

versus: K−1
131 = 1

65



29 −11 4 −1 −1 4 −11
−11 29 −11 4 −1 −1 4

4 −11 29 −11 4 −1 −1
−1 4 −11 29 −11 4 −1
−1 −1 4 −11 29 −11 4
4 −1 −1 4 −11 29 −11
−11 4 −1 −1 54 −11 29





K-matrix formulation exhibits foliation structure.

K′ ∼= WTKW,W ∈ SL(M,Z).

KF =



e1 m1 e2 m2 e3 m3 e4
. . .

0 2 -1
2 0
-1 0 2 -1

2 0
-1 0 2 -1

2 0
-1 0

. . .



If W is only nontrivial in a finite block, this is local in z.

W =



ẽ1 m̃1 ẽ
A m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

e1 1 -1 -1
m1 1
e2 1
m2 1 1
e3 1
m3 1 1
e4 -1 1
m4 1
e5 1

. . .



→ WKFW
T =



ẽ1 m̃1 ẽ
A m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

0 2 -1
2 0

0 2 -1 0
2 0 0 0
-1 0 0 2
0 0 2 0

-1 0 2 -1
2 0
-1 0

. . .



= Z2 × Z2 gauge theory

(Open Q: what are the equivalence classes?)



Lattice construction.

Q: Can these QFTs really arise from local 3d lattice models?

[Ax(I),Ay(J)] ∼
(
K−1

)IJ 6= 0 for |I − J | � 1.

A: Yes. Take layers of IQH, l ∈ Z, coupled to U(1)

gauge fields AI like this: −→ −→ −→
H =

∑
l

∑
〈rr′〉

ul,rr′e
i
∑
I q
IlAI

rr′ c†l,r′cl,r +
∑
I

∑
〈rr′〉

gE
(
EIrr′

)2 − gB∑
p

cosBI
p + gQ

∑
r

(
Qir
)2

Qir ≡ (∇ ·E)ir −
∑
l

qilc†l,rcl,r

Integrate out the fermions:

L = − 1
4π

∑
l ε
µνλalµ∂νa

l
λ + 1

2π

∑
Il q

IlεµνλAIµ∂νa
l
λ.

A local unitary transf W gives K(131) plus

decoupled IQH layers.

l

1
ν = 1

2
ν = 1

3
ν = 1

4
ν = 1

5
ν = 1

6
ν = 1

7
ν = 1

8
ν = 1

9
ν = 1

{A1
µ

{A3
µ

{A2
µ

{A4
µ

(Analogous construction exists for any quasidiagonal K.)

[also ∃ a coupled-wire construction: Sullivan-Dua-Cheng, 2010.15148]



Spectrum.

Include Maxwell terms. Gap = smallest |eigenvalue| of K:

ω2 = k2
x + k2

y +

(
e2

2π
Kq

)2

where Kq are the eigenvalues of K.

For K(1n1) ≡


n 1 1
1 n 1

. . .
. . .

. . .

1 n 1
1 1 n

, the eigenvalues are Kq = n+ 2 cos q

Kq > 0 for n > 2.

For n = 2:

K−1
IJ decays linearly in |I − J |.

K(121)−1 = 1
4



11 −9 7 −5 3 −1 −1 3 −5 7 −9
−9 11 −9 7 −5 3 −1 −1 3 −5 7
7 −9 11 −9 7 −5 3 −1 −1 3 −5
−5 7 −9 11 −9 7 −5 3 −1 −1 3
3 −5 7 −9 11 −9 7 −5 3 −1 −1
−1 3 −5 7 −9 11 −9 7 −5 3 −1
−1 −1 3 −5 7 −9 11 −9 7 −5 3
3 −1 −1 3 −5 7 −9 11 −9 7 −5
−5 3 −1 −1 3 −5 7 −9 11 −9 7
7 −5 3 −1 −1 3 −5 7 −9 11 −9
−9 7 −5 3 −1 −1 3 −5 7 −9 11


Previous related gapless models: [Levin-Fisher 2009]



String operators

Nice bonus of the lattice

construction: explicit operators that

create and transport the planons.

To create planons in layer I:

WI = e−i
∫
AI︸ ︷︷ ︸

creates charge at endpoint

·

e−2πiK−1
IJ

∫
EJ︸ ︷︷ ︸

creates flux at endpoint

·

WI
3︸︷︷︸

quasi-adiabatic response of fermions

For K(131), they have tails.

e−
i
∫ A

2

e−
2π
i
∫ K

−1
21
E
1

W 3(c
† 1r
eiA

rr
′ c 1r

)

e−
2π
i
∫ K

−1
23
E
3

W 3(c
† 3r
eiA

rr
′ c 3r

)

e−
2π
i
∫ K

−1
24
E
4

W 3(c
† 4r
eiA

rr
′ c 4r

)

e−
2π
i
∫ K

−1
25
E
5

W 3(c
† 5r
eiA

rr
′ c 5r

)



Summary.

Depending on K, infinite-component CS theories can be

• gapped and foliated.
Interesting math problem: classify
K′ ∼W (K ⊕ σx)WT ,W ∈ SL(M,Z), local.

• gapped and not foliated.
Examples of fracton TO beyond exactly solvable models (and beyond
’topological defect network’ constructions).

• gapless.
???
Weak SSB – no local order parameter [Dua-Sullivan-Cheng, Ma-Lam-Chen, to

appear]



More open questions.

• Is there an isotropic version of this construction?

• Relation to quiver gauge theories [Razamat, 2107.06465] and
D-branes [Geng-Kachru-Karch-Nally-Rayhaun 2108.08322]?



The end.

Thanks for listening.


