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The standard description of metals

The metallic states that we understand well are described by
Landau’s Fermi liquid theory.
Landau quasiparticles → poles in single-fermion Green function GR

at k⊥ ≡ |~k | − kF = 0, ω = ω⋆(k⊥) ∼ 0: GR ∼ Z

ω − vF k⊥ + iΓ
Measurable by ARPES (angle-resolved photoemission):
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Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vF k⊥)

Landau quasiparticles are long-lived: width is Γ ∼ ω2
⋆.

residue Z (overlap with external e−) is finite on Fermi surface.
Reliable calculation of thermodynamics and transport relies on this.



Non-Fermi liquids exist, but are mysterious
e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)
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among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω⋆) ∼ ω⋆, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface (nonanalyticity of A(ω ∼ 0, k ∼ kF ) )

but no long-lived quasiparticles.
[Anderson, Senthil] ‘critical fermi surface’
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Still a sharp Fermi surface (nonanalyticity of A(ω ∼ 0, k ∼ kF ) )
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T

Most prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, e-phonon: ρ ∼ T 5,

no known robust effective theory: ρ ∼ T .



Superconductivity is a distraction

Look ‘behind’ superconducting dome by turning on magnetic field:

Strange metal persists to T ∼ 0.



Theoretical status of NFL
• Luttinger liquid (1+1-d) G (k, ω) ∼ (k − ω)2g X

• loophole in RG argument:
couple a Landau FL perturbatively to a gapless bosonic mode
(magnetic photon, slave-boson gauge field, statistical gauge field,

ferromagnetism, SDW, Pomeranchuk order parameter...)

k k − q

q

k

[Holstein et al, Baym et al, .... Halperin-Lee-Read,

Polchinski, Altshuler-Ioffe-Millis, Nayak-Wilczek, Schafer-Schwenzer, Chubukov et al,

Y-B Kim et al, Fradkin et al, Lawler et al, Metzner et al, S-S Lee, Metlitski-Sachdev, Mross et al]

→ nonanalytic behavior in GR(ω) ≡ 1
vF k⊥+Σ(ω,k) at FS:

Σ(ω) ∼
{

ω2/3 d = 2 + 1

ω logω d = 3 + 1
=⇒ Z

k⊥→0→ 0,
Γ(k⊥)

ω⋆(k⊥)

k⊥→0→ const

These NFLs are not strange metals in terms of transport.
FL killed by gapless boson: small-angle scattering dominates =⇒
(forward scattering does not degrade current)

‘transport lifetime’ 6= ‘single-particle lifetime’
i.e. in models with Γ(ω⋆) ∼ ω⋆, ρ ∼ Tα>1.



Can string theory be useful here?

It would be valuable to have a non-perturbative description of such
states in more than one dimension.

Gravity dual?

Certain strongly-coupled many body systems can be solved using
an auxiliary theory of gravity in extra dimensions.

We’re not going to look for a gravity dual of the whole material
or of the Hubbard model.
Rather: lessons for principles of “non-Fermi liquid”.



Lightning review of holographic
duality



Holographic duality (AdS/CFT)
[Maldacena; Witten; Gubser-Klebanov-Polyakov]

gravity in AdSd+1 = d-dimensional Conformal Field Theory
(many generalizations, CFT is best-understood.)

AdS : ds2 =
r2

R2

(

−dt2 + d~x2
)

+ R2dr2

r2

isometries of AdSd+1 ! conformal symmetry

IR UVr

R

d+1

d−1,1

Minkowski

UV
IR r

AdS

...

BOUNDARY

The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)



when is it useful?

ZQFT [sources] = Zquantum gravity[boundary conditions at r → ∞]

≈ e−N2Sbulk[boundary conditions at r→∞]|extremum of Sbulk

classical gravity (sharp saddle) ! many degrees of freedom per
point, N2 ≫ 1

fields in AdSd+1 ! operators in CFT
mass ! scaling dimension

boundary conditions on bulk fields ! couplings in field theory

e.g.: boundary value of bulk metric limr→∞ gµν

= source for stress-energy tensor Tµν

different couplings in bulk action ! different field theories

large AdS radius R ! strong coupling of QFT



confidence-building measures

◮ 1. Many detailed checks in special examples
examples: relativistic gauge theories (fields are N × N matrices), with

extra symmetries (conformal invariance, supersymmetry)

checks: ‘BPS quantities,’ integrable techniques, some numerics

◮ 2. sensible answers for physics questions
rediscoveries of known physical phenomena: e.g. color confinement, chiral

symmetry breaking, thermo, hydro, thermal screening, entanglement

entropy, chiral anomalies, superconductivity, ...
Gravity limit, when valid, says who are the correct variables.
Answers questions about thermodynamics, transport, RG flow, ...

in terms of geometric objects.

◮ 3. applications to quark-gluon plasma (QGP)
benchmark for viscosity, hard probes of medium, approach to equilibrium



simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

ds2 = w(r)2
(

−dt2 + d~x2
)

+ R2 dr2

r2

CFT: bulk geometry goes on forever, warp factor w(r) = r
R
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IR UVr
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3,1

minkowski

UV

confining geometry

r
MIN r

R

Model with a gap: geometry ends smoothly,
warp factor w(r) has a min: if
IR region is missing, no low-energy excitations,

energy gap.



Strategy to find a holographic Fermi surface

Consider any relativistic CFT with a gravity dual
a conserved U(1) symmetry proxy for fermion number → Aµ
and a charged fermion operator proxy for bare electrons → ψ.
Any d > 1 + 1, focus on d = 2 + 1.

!" !" !" !" !"

AdS
4

x
1

x
2

AdS
2 
! !2

CFT at finite density: charged

black hole (BH) in AdS .
To find FS: [Sung-Sik Lee 0809.3402]

look for sharp features
in fermion Green functions
at finite momentum
and small frequency.

To compute GR : solve Dirac equation in charged BH geometry.
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− 2κ2

g2
F

F 2 + ...

• a conserved U(1) current (proxy for fermion number)

→ gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the

AdS Reissner-Nordstrom black hole:

ds2 =
r2

L2

(
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+ L2 dr2

r2f
, A = µ
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• a charged fermion operator OF (proxy for bare electrons)

→ spinor field ψ in the bulk Ld+1 ∋ ψ̄ (DµΓ
µ − m)ψ + interactions

with Dµψ =
(

∂µ + 1
4ωµ · Γ − iqAµ

)

ψ ( ∆ = d
2
± mL, q = q )

‘Bulk universality’: for two-point functions, the interaction terms don’t matter.

Results only depend on q,∆.



Comments about the strategy

◮ There are many string theory vacua with these ingredients.
In specific examples of dual pairs
(e.g. M2-branes ! M th on AdS4 × S7),
interactions and {q,m} are specified.
Which sets {q,m} are possible and what correlations there are is not

clear.

◮ This is a large complicated system (ρ ∼ N2), of which we are
probing a tiny part (ρΨ ∼ N0).

◮ In general, both bosons and fermions of the dual field theory
are charged under the U(1) current: this is a Bose-Fermi
mixture.

Notes: frequencies ω below are measured from the chemical potential.

Results are in units of µ.



Computing GR

Translation invariance in ~x , t =⇒ ODE in r .
Rotation invariance: ki = δ1i k
Near the boundary, solutions behave as (Γr = −σ3 ⊗ 1)

ψ
r→∞≈ aαr

m

(

0
1

)

+ bαr
−m

(

1
0

)

Matrix of Green’s functions, has two independent eigenvalues:

Gα(ω,~k) =
bα

aα
, α = 1, 2

To compute GR : solve Dirac equation in BH geometry,
impose infalling boundary conditions at horizon [Son-Starinets...Iqbal-Liu].
Like retarded response, falling into the BH is something that happens.



Fermi surface!
At T = 0, we find (numerically):
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But it’s not a Fermi liquid:

The peak moves
with dispersion relation ω ∼ kz

⊥ with

z = 2.09 for q = 1,∆ = 3/2.
z = 5.32 for q = 0.6,∆ = 3/2

and the residue vanishes.



Emergent quantum criticality

Whence these exponents?

Near-horizon geometry of black hole is AdS2 × R
d−1.

The conformal invariance of this metric is emergent.
(We broke the microscopic conformal invariance with finite density.)

boundary

d+1AdS
d−1

xRAdS2

horizon
r−1<<1 r>>1
ω ≪ µ ω ≫ µ

AdS/CFT =⇒ the low-energy physics governed by dual IR CFT.
The bulk geometry is a picture of the RG flow from the CFTd to this NRCFT.

Idea for analytic understanding of FS behavior:
solve Dirac equation by matched asymptotic expansions.
In the QFT, this is RG matching between UV and IR CFTs.



Analytic understanding of Fermi surface behavior: results

GR(ω, k) =
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(

b
(0)
− + ωb

(1)
− + O(ω2)

)

a
(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(

a
(0)
− + ωa

(1)
− + O(ω2)

)

The location of the Fermi surface (a
(0)
+ (k = kF ) = 0) is determined by

short-distance physics (analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac equation in full BH)

but the low-frequency scaling behavior near the FS is universal
(determined by near-horizon region – IR CFT G).

G = c(k)ω2ν is the retarded GR of the op to which OF matches.
its scaling dimension is ν + 1

2 , with (for d = 2 + 1)

ν ≡ L2

√

m2 + k2 − q2/2

L2 is the ‘AdS radius’ of the IR AdS2.



Consequences for Fermi surface

GR(ω, k) =
h1

k⊥ − 1
vF
ω − h2c(k)ω2νkF

h1,2, vF real, UV data.
The AdS2 Green’s function

is the self-energy Σ = G = c(k)ω2ν !

Correctly fits numerics near FS:



ν <
1
2
: non-Fermi liquid

GR(ω, k) =
h1

k⊥ − 1
vF
ω − cω2νkF

if νkF
<

1

2
, ω⋆(k) ∼ kz

⊥, z =
1

2νkF

> 1

Α-

Α+k
¦
<0

k
¦
>0

Γ(k)

ω⋆(k)

k⊥→0→ const, Z ∝ k

1−2νkF
2νkF

⊥

k⊥→0→ 0.

Not a stable quasiparticle.



ν >
1
2
: Fermi liquid

GR(ω, k) =
h1

k⊥ + 1
vF
ω + cω2νkF

ω⋆(k) ∼ vFk⊥

c is complex.

-1.0 -0.5 0.5 1.0

-0.003

-0.002

-0.001
Hk
¦
L2Ν

vF k
¦

Γ(k)

ω⋆(k)
∝ k

2νkF
−1

⊥

k⊥→0→ 0 Z
k⊥→0→ h1vF .

A stable quasiparticle, but never Landau Fermi liquid.



Summary of spectral properties
Depending on the dimension of the operator (ν + 1

2) in the IR
CFT, we find Fermi liquid behavior (but not Landau)

or non-Fermi liquid behavior:

ν < 1
2 ν = 1

2 ν > 1
2



ν = 1
2
: Marginal Fermi liquid

GR ≈ h1

k⊥ + c̃1ω lnω + c1ω
, c̃1 ∈ R, c1 ∈C

Γ(k)

ω⋆(k)

k⊥→0→ const, Z ∼ 1

| lnω⋆|
k⊥→0→ 0.

A well-named phenomenological model of high-Tc cuprates near optimal doping

[Varma et al, 1989].



UV data: where are the Fermi sufaces?
Above we supposed a(kF )

(0)
+ = 0. This happens at

kF : k s.t. ∃ normalizable, incoming solution at ω = 0:
The black hole can acquire ‘inhomogenous fermionic hair’.

Schrodinger potential V (τ)/k2 at ω = 0 for m < 0,m = 0,m > 0.
τ is the tortoise coordinate Right (τ = 0) is boundary; left is horizon.

k > qed : Potential is always positive
k < kosc ≡

√

(qed )2 − m2: near the horizon V (x) = α
τ2 , with

α < −1
4 (“oscillatory region”)

k ∈ (qed , kosc ): the potential develops a potential well, indicating
possible existence of a zero energy bound state.
Note: can also exist on asymp. flat BH [Hartman-Song-Strominger 0912]



Charge transport

T

Most prominent mystery →
of strange metal phase: σDC ∼ T−1

(j = σE)

e-e scattering: σ ∼ T−2, e-phonon scattering: σ ∼ T−5, nothing: σ ∼ T−1



Charge transport

T

Most prominent mystery →
of strange metal phase: σDC ∼ T−1

(j = σE)

e-e scattering: σ ∼ T−2, e-phonon scattering: σ ∼ T−5, nothing: σ ∼ T−1

We can compute the contribution
to the conductivity from
the Fermi surface. [Faulkner, Iqbal, Liu, JM, Vegh]

+ + + + + + + +

O(N2)

O(N0)Note: this is not the dominant contribution. →

σDC = lim
ω→0

Im
1

ω
〈jx jx〉(ω,~0) ∼ N2 T 2

µ2
+ N0

(

σFS
DC + ...

)



Charge transport by holographic non-Fermi liquids
slight complication: gauge field ax mixes with metric perturbations.
There’s a big charge density. Pulling on it with ~E leads to momentum flow.



Charge transport by holographic non-Fermi liquids
slight complication: gauge field ax mixes with metric perturbations.
There’s a big charge density. Pulling on it with ~E leads to momentum flow.

aa

key step: ImDαβ(Ω, k; r1, r2) =
ψb
α(Ω,k,r1)ψ̄b

β(Ω,k,r2)

Wab
A(Ω, k)

bulk spectral density ImD ...

1. ... is determined by bdy fermion spectral density, A(ω, k) = ImGR(ω, k)

2. ... factorizes on normalizable bulk sol’ns ψb

a(r )1 2a(r )



Charge transport by holographic non-Fermi liquids

Like Fermi liquid calculation, ~J ∼ iψ†~∇ψ
but with extra integrals over r , and no vertex corrections.

σFS
DC = C

∫ ∞

0
dkk

∫ ∞

−∞

dω

2π

df

dω
Λ2(k, ω)A2(ω, k)

f (ω) = 1

e
ω

T +1
: the Fermi distribution function

Λ: an effective vertex, data analogous to vF , h1,2.

Λ ∼ q
R

∞

r0
dr
√

gg xxax(r , 0)
ψ̄b(r)Γxψb(r)

Wab
∼ const.

∫

dkA(k, ω)2 ∼ 1

T 2νg(ω/T )

scale out T -dependence =⇒ σDC ∼ T−2ν .



Dissipation mechanism

++

boundary

horizon
+ + +++ + + +

σDC ∝ Im〈jj〉 comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS2 DoFs.
=⇒ single-particle lifetime controls transport.

marginal Fermi liquid: ν = 1
2 =⇒ ρFS =

(

σDC
)−1

∼ T .



Dissipation mechanism

++

boundary

horizon
+ + +++ + + +

σDC ∝ Im〈jj〉 comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS2 DoFs.
=⇒ single-particle lifetime controls transport.

marginal Fermi liquid: ν = 1
2 =⇒ ρFS =

(

σDC
)−1

∼ T .

The optical conductivity σ(Ω) can distinguish the existence of
quasiparticles (ν > 1

2) through the presence of a transport peak.



Questions regarding the stability of
this state



Charged AdS black holes and frustration

Entropy density of black hole:

s(T = 0) =
1

Vd−1

A

4GN

= 2πedρ. (ed ≡ gF
√

2d(d − 1)
)

This is a large low-energy density of states!
not supersymmetric ... lifted at finite N



Charged AdS black holes and frustration

Entropy density of black hole:

s(T = 0) =
1

Vd−1

A

4GN

= 2πedρ. (ed ≡ gF
√

2d(d − 1)
)

This is a large low-energy density of states!
not supersymmetric ... lifted at finite N

pessimism: S(T = 0) 6= 0 violates third law of thermodynamics, unphysical,

weird string-theorist nonsense.

optimism:
we’re describing the state where the SC instability is removed by hand

(here: don’t include charged scalars, expt: large ~B).

[Hartnoll-Polchinski-Silverstein-Tong, 0912.]: bulk density of fermions modifies
extreme near-horizon region (out to δr ∼ e−N2

), removes residual
entropy. (Removes non-analyticity in Σ(ω) for ω < e−N2

µ)



Stability of the groundstate

Charged bosons: In many explicit constructions, ∃ charged scalars.
• At small T , they can condense spontaneously breaking the U(1)

symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz...].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP → 〈O(t)〉 ∼ e iω⋆t ∝ e+Imω⋆t

=⇒ growing modes of charged operator: holographic superconductor
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symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz...].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP → 〈O(t)〉 ∼ e iω⋆t ∝ e+Imω⋆t

=⇒ growing modes of charged operator: holographic superconductor

+

+ + + + + 

-

++++++++++

AdS

AdS
Horizon

Boundary 

++++++++++

r = rh

r

(t, x, y)

Boundary why: black hole spontaneously

emits
charged particles [Starobinsky, Unruh, Hawking].
AdS is like a box: they can’t escape.

Fermi:
negative energy states get filled.
Bose: the created particles then cause
stimulated emission (superradiance).
A holographic superconductor is a “black hole laser”.



Photoemission ‘exp’ts’ on holographic superconductors

E (meV)

So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k , ω).



Photoemission ‘exp’ts’ on holographic superconductors

E (meV)

So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k , ω).

With a suitable coupling between ψ and ϕ,

the superconducting condensate

opens a gap in the fermion spectrum.

[Faulkner, Horowitz, JM, Roberts, Vegh]

if qϕ = 2qψ we can have

Lbulk ∋ η5ϕψ̄CΓ5ψ̄T + h.c

The (gapped) quasiparticles
are exactly stable in a certain
kinematical regime
(outside the lightcone of the IR CFT) –
the condensate lifts the IR CFT modes

into which they decay.



Framework for non-Fermi liquid

a cartoon of the mechanism:

Quantum 

Critical

a similar picture has been advocated by [Varma et al]



Comparison of ways of killing a FL
• a Fermi surface coupled to a critical boson field

L = ψ̄ (ω − vFk)ψ + ψ̄ψa + L(a)

small-angle scattering dominates.

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent [FLMV 0907.2694, Faulkner-Polchinski

1001.5049, FLMV+Iqbal 1003.1728]

L = ψ̄ (ω − vFk)ψ + ψ̄χ+ ψχ̄+ χ̄G−1χ

χ: IR CFT operator�=� +� +� +. . .

〈ψ̄ψ〉 =
1

ω − vFk − G G = 〈χ̄χ〉 = c(k)ω2ν

ν ≤ 1
2 : ψ̄χ coupling is a relevant perturbation.



Concluding remarks

1. The green’s function near the FS is of the form (‘local quantum

criticality’, analytic in k .) found previously in perturbative
calculations, but the nonanalyticity can be order one.

2. This is an input of many studies. (Dynamical Mean Field Theory)

3. [Denef-Hartnoll-Sachdev, Hartnoll-Hofman] The leading N−1 contribution to the
free energy exhibits quantum oscillations in a magnetic field.

4. Main challenge: step away from large N. So far:

• Fermi surface is a small part of a big system.
• Fermi surface does not back-react on IR CFT.
• IR CFT has z = ∞.



The end.

Thanks for listening.



Public service announcement

Please practice holography
responsibly.



Where are the Fermi sufaces?

m = −0.4, 0, 0.4:
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1

2
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1√
6

√

m2 + k2 − q2/2



Finite temperature

The complex omega plane for T = 4.13 × 10−4:
dashed line: trajectory of the pole between k = 0.87(left). . . 0.93(right).

mink (Imωc) ≃ T (up to 1% accuracy).

In background: density plot for ImG22(ω) at k = 0.90

near-horizon geometry is a BH in AdS2

(BH in)

d+1AdS
d−1

xRAdS2

horizon boundary

r−1<<1 r>>1

Σ(ω,T ) = T 2νg(ω/T ) = (2πT )2ν
Γ(1

2 + ν − iω
2πT

+ iqed)

Γ
(

1
2 − ν − iω

2πT
+ iqed

)

T→0→ ckω
2ν



Fermion poles always in LHP!

arg ck = arg
(

e2πiν ± e−2πqed
)

G = ckω
2ν

± for boson/fermion.
ω2ν

c = real ·
(

e−2πiν − e−2πqed
)

.
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Figure: A geometric argument that poles of the fermion Green function
always appear in the lower-half ω-plane: Depicted here is the ω2ν

covering space on which the Green function is single-valued. The shaded
region is the image of the upper-half ω-plane of the physical sheet.



Fermi velocity

Think of ω = 0 Dirac eqn as Schrödinger problem.

Like Feynman-Hellmann theorem: ∂k〈H〉 = 〈∂kH〉
we can derive a formula for vF in terms of expectation values in
the bound-state wavefunction Φ+

(0).
Let:

〈O〉 ≡
∫ ∞

r⋆

dr
√

grrO ,

Jµ ≡ Φ̄+
(0) ∂kµ /D0,kF

Φ+
(0) = Φ̄+

(0)Γ
µΦ+

(0)

is the bulk particle-number current.

vF =
〈J1〉
〈J0〉 =

∫

dr
√

grrg ii
(

|y |2 − |z |2
)

∫

dr
√

grr (−g tt) (|y |2 + |z |2)
.

Φ =

(

y

z

)

Note: g ii

−gtt = f (r) ≤ 1 implies that vF ≤ c.



Fermi velocity

Figure: The Fermi velocity of the primary Fermi surface of various
components as a function of 2ν > 1 for various values of m.



An explanation for the particle-hole symmetry

Α-

Α+k
¦
<0

k
¦
>0

-1.0 -0.5 0.5 1.0

-0.003

-0.002

-0.001
Hk
¦
L2Ν

vF k
¦

Figure: Left: Motion of poles in the ν < 1
2 regime. As k varies towards

kF , the pole moves in a straight line (hence Γ ∼ ωc), and hits the branch
point at the origin at k = kF . After that, depending on γ(kF ), it may
move to another Riemann sheet of the ω-plane, as depicted here. In that
case, no resonance will be visible in the spectral weight for k > kF .
Right: Motion of poles in the ν > 1

2 regime, which is more like a Fermi
liquid in that the dispersion is linear in k⊥; the lifetime is still never of
the Landau form.

Note: the location of the branch cut is determined by physics:

at T > 0, it is resolved to a line of poles.



Oscillatory region

Above we assumed ν = R2

√

m2 + k2 − (qed)2 ∈ R

ν = iλ ⇔ Oscillatory region.

This is when particle production occurs in AdS2. [Pioline-Troost]

Effective mass below BF bound in AdS2. [Hartnoll-Herzog-Horowitz]

Reωi2λ = sin 2λ log ω =⇒ periodic in logω with period π
|ν| .

comments about boson case:
Net flux into the outer region > 0 = superradiance of AdS RN
black hole (rotating brane solution in 10d)

Classical equations know quantum statistics!
like: statistics functions in greybody factors

Required for consistency of AdS/CFT!

boson: particles emitted from near-horizon region, bounce off
AdSd+1 boundary and return, causing further stimulated emission.
spinor: there is particle production in AdS2 region, but net flux
into the outer region is negative (‘no superradiance for spinors’).



Oscillatory region and log-periodicity

When ν(k) is imaginary, G ∼ ων is periodic in logω.

0 10 20 30 40 50 60

-2

0

2

4

6

-logÈΩÈ

Re@G22D, Im@G22D

Figure: Both ReG22(ω, k = 0.5) (blue curve) and ImG22(ω, k = 0.5)
(orange) are periodic in logω as ω → 0.
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Figure: The motion of poles of the Green functions of spinors (left) and
scalars (right) in the complex frequency plane. Both plots are for
parameter values in the oscillatory region (q = 1,m = 0). In order to give
a better global picture, the coordinate used on the complex frequency
plane is s = |ω| 1

20 exp(i arg(ω)). The dotted line intersects the locations
of the poles at k = k0 = ..., and its angle with respect to the real axis is
determined by G(k , ω). The dashed lines in the left figure indicate the
motion of poles on another sheet of the complex frequency plane at
smaller values of k < k0. As k approaches the boundary of the oscillatory
region, most of the poles join the branch cut. It seems that one pole that
becomes the Fermi surface actually manages to stay in place. These plots
are only to be trusted near ω = 0.
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Oscillatory Region

No Classical Orbits

P

Information from WKB. At large q,m, the primary Fermi momentum is given

by the WKB quantization formula: kF

R s+

s
−

ds
p

V (s;α, β) = π, where

α ≡ q

k
, β ≡ m

k
, s is the tortoise coordinate, and s± are turning points

surrounding the classically-allowed region. For k < q/
√

3, the potential is

everywhere positive, and hence there is no zero-energy boundstate. This line

intersects the boundary of the oscillatory region at k2 + m2 = q2/2 at the point

P = (α, β) = (
√

6,
√

2). Hence, only in the shaded (blue) region is there a

Fermi surface. The exponent ν(kF ) is then given by ν(kF ) =
π
√

1+β2−α2/2
R

ds
√

V (s;α,β)
.

This becomes ill-defined at the point P, and interpolates between ν = 0 at the

boundary of the oscillatory region, and ν = ∞ at k = q/
√

3.
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